Unbalance Response of Flexible Rotors Coupled With Torsion

1989 ◽  
Vol 111 (2) ◽  
pp. 179-186 ◽  
Author(s):  
H. Diken ◽  
I. G. Tadjbakhsh

The effect of coupling with torsion on the unbalance response of flexible rotors, supported by isotropic flexible and damped bearings is investigated. Flexural vibrations of the shaft-disk system are coupled with torsional oscillations through mass eccentricity. The governing equations of motion of the continuous system are solved numerically with a modified Myklestad-Prohl method without the necessity of considering an equivalent lumped system. The cases of constant or harmonic torque applied to the disk are considered. Gyroscopic, rotary inertia, shear deformation, external and internal damping effects are taken into account.

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Ren Yongsheng ◽  
Zhang Xingqi ◽  
Liu Yanghang ◽  
Chen Xiulong

The dynamical analysis of a rotating thin-walled composite shaft with internal damping is carried out analytically. The equations of motion are derived using the thin-walled composite beam theory and the principle of virtual work. The internal damping of shafts is introduced by adopting the multiscale damping analysis method. Galerkin’s method is used to discretize and solve the governing equations. Numerical study shows the effect of design parameters on the natural frequencies, critical rotating speeds, and instability thresholds of shafts.


2002 ◽  
Vol 124 (4) ◽  
pp. 492-501 ◽  
Author(s):  
Nicole L. Zirkelback ◽  
Jerry H. Ginsberg

A shaft with attached rigid disks is modeled as a rotating Timoshenko beam supported by nonconservative, flexible bearing supports. The continuous shaft-disk system is described with kinetic and potential energy functionals that fully account for transverse shear, translational and rotatory inertia, and gyroscopic coupling. Ritz series expansions are used to describe the flexural displacements and cross-sectional rotations about orthogonal fixed axes. The equations of motion are derived from Lagrange’s equations and placed in a state-space form that preserves the skew-symmetric gyroscopic matrix as well as the full effects of the bearings. Both the general and adjoint eigenproblems for the nonsymmetric equations are solved. Bi-orthogonality conditions lead to the ability to evaluate dynamic response via modal analysis. Whirl speeds and logarithmic decrements calculated with the present model are verified with a finite element analysis. The present work provides two ways of evaluating the convergence of results to demonstrate an advantage of the Ritz method over other discretization methods. Natural mode functions and unbalance response are calculated for an example system.


Author(s):  
Keisuke Kamiya ◽  
Yuichi Mizuno

In identifying machines and structures, one sometimes encounters cases in which the system should be regarded as a nonlinear continuous system. The governing equations of motion of a nonlinear continuous system are described by a set of nonlinear partial differential equations and boundary conditions. Determining both of them simultaneously is a quite difficult task. Thus, one has to discretize the governing equations of motion, and reduce the order of the equations as much as possible. In analysis of nonlinear vibratory systems, it is known that one can reduce the order of the system by using the nonlinear normal modes while preserving the effect of the nonlinearity accurately. The nonlinear normal modes are description of motion by nonlinear functions of the coordinates for analysis. In identification it is expected that an accurate mathematical model with minimum degree of freedom can be determined if one can express the response as nonlinear functions of the coordinates for identification. Based on this idea, in a previous report the authors proposed an identification technique which uses nonlinear principal component analysis by a neural network. In this report, procedure to apply the identified result to structural modification is presented. It is shown via numerical example that when the structural modification is not so large, response prediction of the modified system with enough accuracy is possible.


Author(s):  
Keisuke Kamiya ◽  
Yuichi Mizuno ◽  
Kimihiko Yasuda

In identifying machines and structures, one sometimes encounters cases in which the system should be regarded as a nonlinear continuous system. The governing equations of motion of a nonlinear continuous system are described by a set of nonlinear partial differential equations and boundary conditions. Determining both of them simultaneously is a quite difficult task. Thus, one has to discretize the governing equations of motion, and reduce the order of the equations as much as possible. In analysis of nonlinear vibratory systems, it is known that one can reduce the order of the system by using the nonlinear normal modes preserving the effect of the nonlinearity accurately. The nonlinear normal modes are description of motion by nonlinear functions of the coordinates for analysis. In identification it is expected that an accurate mathematical model with minimum degree of freedom can be determined if one can express the response as nonlinear functions of the coordinates for identification. Based on this idea, this paper proposes an identification technique which uses nonlinear principal component analysis by a neural network. Applicability of the proposed technique is confirmed by numerical simulation.


2021 ◽  
pp. 107754632110399
Author(s):  
Pei Zhang ◽  
Hai Qing

In this article, the well-posedness of several common nonlocal models for higher-order refined shear deformation beams is studied. Unlike the case of classic beams models, both strain-driven and stress-driven purely nonlocal theories lead to an ill-posed issue (i.e., there are excessive mandatory boundary conditions) when considering higher-order shear deformation assumption. As an effective remedy, the well-posedness of strain-driven and stress-driven two-phase nonlocal (StrainDTPN and StressDTPN) models is pertinently evidenced by studying the free vibration problem of nanobeams. The governing equations of motion and standard boundary conditions are derived from Hamilton’s principle. The integral constitutive relation is transformed equivalently to a differential form equipped with two constitutive boundary conditions. Using the generalized differential quadrature method (GDQM), the governing equations in terms of displacements are solved numerically. Numerical results show that both the StrainDTPN and StressDTPN models can predict consistent size-effects of beams with different boundary conditions.


Author(s):  
A. R. Ohadi ◽  
G. Maghsoodi

In this paper, vibration behavior of engine on nonlinear hydraulic engine mount including inertia track and decoupler is studied. In this regard, after introducing the nonlinear factors of this mount (i.e. inertia and decoupler resistances in turbulent region), the vibration governing equations of engine on one hydraulic engine mount are solved and the effect of nonlinearity is investigated. In order to have a comparison between rubber and hydraulic engine mounts, a 6 degree of freedom four cylinders V-shaped engine under inertia and balancing masses forces and torques is considered. By solving the time domain nonlinear equations of motion of engine on three inclined mounts, translational and rotational motions of engines body are obtained for different engine speeds. Transmitted base forces are also determined for both types of engine mount. Comparison of rubber and hydraulic mounts indicates the efficiency of hydraulic one in low frequency region.


2012 ◽  
Vol 28 (3) ◽  
pp. 513-522 ◽  
Author(s):  
H. M. Khanlo ◽  
M. Ghayour ◽  
S. Ziaei-Rad

AbstractThis study investigates the effects of disk position nonlinearities on the nonlinear dynamic behavior of a rotating flexible shaft-disk system. Displacement of the disk on the shaft causes certain nonlinear terms which appears in the equations of motion, which can in turn affect the dynamic behavior of the system. The system is modeled as a continuous shaft with a rigid disk in different locations. Also, the disk gyroscopic moment is considered. The partial differential equations of motion are extracted under the Rayleigh beam theory. The assumed modes method is used to discretize partial differential equations and the resulting equations are solved via numerical methods. The analytical methods used in this work are inclusive of time series, phase plane portrait, power spectrum, Poincaré map, bifurcation diagrams, and Lyapunov exponents. The effect of disk nonlinearities is studied for some disk positions. The results confirm that when the disk is located at mid-span of the shaft, only the regular motion (period one) is observed. However, periodic, sub-harmonic, quasi-periodic, and chaotic states can be observed for situations in which the disk is located at places other than the middle of the shaft. The results show nonlinear effects are negligible in some cases.


1988 ◽  
Vol 66 (7) ◽  
pp. 576-579
Author(s):  
G. T. Karahalios ◽  
C. Sfetsos

A sphere executes small-amplitude linear and torsional oscillations in a fluid at rest. The equations of motion of the fluid are solved by the method of successive approximations. Outside the boundary layer, a steady secondary flow is induced in addition to the time-varying motion.


2003 ◽  
Vol 125 (1) ◽  
pp. 12-17 ◽  
Author(s):  
I. Hagiwara ◽  
D. W. Wang ◽  
Q. Z. Shi ◽  
R. S. Rao

A new analytical model is developed for the reduction of noise inside a cavity using distributed piezoelectric actuators. A modal coupling method is used to establish the governing equations of motion of the fully coupled acoustics-structure-piezoelectric patch system. Two performance functions relating “global” and “local” optimal control of sound pressure levels (SPL) respectively are applied to obtain the control laws. The discussions on associated control mechanism show that both the mechanisms of modal amplitude suppression and modal rearrangement may sometimes coexist in the implementation of optimal noise control.


Sign in / Sign up

Export Citation Format

Share Document