Static Determinacy in the Theory of Finite Width Foil Bearings

1974 ◽  
Vol 41 (1) ◽  
pp. 51-54 ◽  
Author(s):  
W. E. Langlois

The assumption of “perfect flexibility” is shown to be self-consistent in an important class of finite-width foil bearing problems. When the membrane equations are written in the “stretched coordinates” of foil bearing theory, the usual edge conditions on the tape result in a statically determinate problem. The tape dynamics couples to the Reynolds lubrication equation through a single force-balance equation which does not entail the elastic strain.

1968 ◽  
Vol 90 (1) ◽  
pp. 199-220 ◽  
Author(s):  
L. Licht

An elastic foil under tension is wrapped partly around a rotating cylinder and is supported on a thin film of air. Capacitance probes, coincident with the surface of the cylinder, scan the air gap along the arc of wrap. The cylinder can be traversed across the width of the stationary foil, so that the topography of the air gap can be determined from a series of circumferential scans. Experimental results are compared quantitatively with theoretical predictions for the perfectly flexible and for the elastic foil bearing of infinite width [8, 12]. A comparison is also made with theory, for the case when the angle of wrap is small and the entrance and exit transition zones merge [9]. The effect of foil and gap width on side leakage is illustrated. The last part of this study deals with elastic foil bearings of finite width and with the characteristic “edge effect” in particular. The influence of various parameters on the nature of the displacement field of foils is demonstrated and related to recent analyses [13].


2007 ◽  
Vol 129 (3) ◽  
pp. 628-639 ◽  
Author(s):  
Ju-ho Song ◽  
Daejong Kim

A new foil gas bearing with spring bumps was constructed, analyzed, and tested. The new foil gas bearing uses a series of compression springs as compliant underlying structures instead of corrugated bump foils. Experiments on the stiffness of the spring bumps show an excellent agreement with an analytical model developed for the spring bumps. Load capacity, structural stiffness, and equivalent viscous damping (and structural loss factor) were measured to demonstrate the feasibility of the new foil bearing. Orbit and coast-down simulations using the calculated stiffness and measured structural loss factor indicate that the damping of underlying structure can suppress the maximum peak at the critical speed very effectively but not the onset of hydrodynamic rotor-bearing instability. However, the damping plays an important role in suppressing the subsynchronous vibrations under limit cycles. The observation is believed to be true with any air foil bearings with different types of elastic foundations.


Author(s):  
Ali Ahmadi ◽  
Mina Hoorfar

In this article, microdroplet motion in the electrocapillary-based digital microfluidic systems is modeled accurately, and the combined effects of the biomolecular adsorption and micro-droplet evaporation on the performance of the device are investigated. An electrohydrodynamic approach is used to model the driving and resisting forces, and Fick’s law and Gibbs equation are used to calculate the microdroplet evaporation and adsorption rate. Effects of the adsorption and evaporation rates are then implemented into the microdroplet dynamics by adding new terms into the force balance equation. It is shown that mass loss due to the evaporation tends to increase the protein concentration, and on the other hand, the increased concentration due to the mass loss increases the biomolecular adsorption rate which has a reverse effect on the concentration. The modeling results indicate that evaporation and adsorption play crucial roles in the microdroplet dynamics.


2015 ◽  
Vol 138 (2) ◽  
Author(s):  
Kai Feng ◽  
Yuman Liu ◽  
Xueyuan Zhao ◽  
Wanhui Liu

Rotors supported by gas foil bearings (GFBs) experience stability problem caused by subsynchronous vibrations. To obtain a GFB with satisfactory damping characteristics, this study presented a novel hybrid bump-metal mesh foil bearing (HB-MMFB) that consists of a bump foil and metal mesh blocks in an underlying supporting structure, which takes advantage of both bump-type foil bearings (BFBs) and MMFBs. A test rig with a nonrotating shaft was designed to estimate structure characterization. Results from the static load tests show that the proposed HB-MFBs exhibit an excellent damping level compared with the BFBs with a similar size because of the countless microslips in the metal mesh blocks. In the dynamic load tests, the HB-MFB with a metal mesh density of 36% presents a viscous damping coefficient that is approximately twice that of the test BFB. The dynamics structural coefficients of HB-MFBs, including structural stiffness, equivalent viscous damping, and structural loss factor, are all dependent on excitation frequency and motion amplitude. Moreover, they exhibit an obvious decrease with the decline in metal mesh density.


Author(s):  
K. Shalash ◽  
J. Schiffmann

Potential geometrical deviations in bump foil bearings due to manufacturing uncertainty can have significant effects on both the local stiffness and clearance, and hence, affecting the overall bearing performance. The manufacturing uncertainty of bump type foil bearings was investigated, showing large geometrical deviations, using a developed measurement tool for the formed bump foils. A reduced order foil bearing model was used in a Monte Carlo simulation studying the effect of manufacturing noise on the onset of instability, highlighting the sensitivity of the rotor-bearing system to such manufacturing deviations. It was found that 30% of the simulated cases resulted improvements in stability, the remaining cases underperformed. Attempting to increase the robustness of the bearing, two other compliant structures replacing the classical gen-II bump foils were investigated from a manufacturing perspective. The first is a modified bump type Sinusoidal foil, and the second is the Cantilever beam foil. Consequently, quasi-static load-displacement tests were executed showing deviations in local clearance and stiffness for the classical bump type compliant structure compared to the other designs. It was found that the Cantilever beam foils yield more robustness compared to the bump type foils. Finally, an analytical model for the sequential engagement of the compliant structure is presented and validated with experimental measurements for both bump type and Cantilever structures.


Author(s):  
Daejong Kim ◽  
Brian Nicholson ◽  
Lewis Rosado ◽  
Garry Givan

Foil bearings are one type of hydrodynamic air/gas bearings but with a compliant bearing surface supported by structural material that provides stiffness and damping to the bearing. The hybrid foil bearing (HFB) in this paper is a combination of a traditional hydrodynamic foil bearing with externally-pressurized air/gas supply system to enhance load capacity during the start and to improve thermal stability of the bearing. The HFB is more suitable for relatively large and heavy rotors where rotor weight is comparable to the load capacity of the bearing at full speed and extra air/gas supply system is not a major added cost. With 4,448N∼22,240N thrust class turbine aircraft engines in mind, the test rotor is supported by HFB in one end and duplex rolling element bearings in the other end. This paper presents experimental work on HFB with diameter of 102mm performed at the US Air force Research Laboratory. Experimental works include: measurement of impulse response of the bearing to the external load corresponding to rotor’s lateral acceleration of 5.55g, forced response to external subsynchronous excitation, and high speed imbalance response. A non-linear rotordynamic simulation model was also applied to predict the impulse response and forced subsynchronous response. The simulation results agree well with experimental results. Based on the experimental results and subsequent simulations, an improved HFB design is also suggested for higher impulse load capability up to 10g and rotordynamics stability up to 30,000rpm under subsynchronous excitation.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Said Jahanmir ◽  
Hooshang Heshmat ◽  
Crystal Heshmat

Diamondlike carbon (DLC) coatings, particularly in the hydrogenated form, provide extremely low coefficients of friction in concentrated contacts. The objective of this investigation was to evaluate the performance of DLC coatings for potential application in foil bearings. Since in some applications the bearings experience a wide range of temperatures, tribological tests were performed using a single foil thrust bearing in contact with a rotating flat disk up to 500°C. The coatings deposited on the disks consisted of a hydrogenated diamondlike carbon film (H-DLC), a nonhydrogenated DLC, and a thin dense chrome deposited by the Electrolyzing™ process. The top foil pads were coated with a tungsten disulfide based solid lubricant (Korolon™ 900). All three disk coatings provided excellent performance at room temperature. However, the H-DLC coating proved to be unacceptable at 300°C due to lack of hydrodynamic lift, albeit the very low coefficient of friction when the foil pad and the disk were in contact during stop-start cycles. This phenomenon is explained by considering the effect of atmospheric moisture on the tribological behavior of H-DLC and using the quasihydrodynamic theory of powder lubrication.


Author(s):  
Nguyen LaTray ◽  
Daejong Kim

This work presents the theoretical and experimental rotordynamic evaluations of a rotor–air foil bearing (AFB) system supporting a large overhung mass for high-speed application. The proposed system highlights the compact design of a single shaft rotor configuration with turbomachine components arranged on one side of the bearing span. In this work, low-speed tests up to 45 krpm are performed to measure lift-off speed and to check bearing manufacturing quality. Rotordynamic performance at high speeds is evaluated both analytically and experimentally. In the analytical approach, simulated imbalance responses are studied using both rigid and flexible shaft models with bearing forces calculated from the transient Reynolds equation along with the rotor motion. The simulation predicts that the system experiences small synchronous rigid mode vibration at 20 krpm and bending mode at 200 krpm. A high-speed test rig is designed to experimentally evaluate the rotor–air foil bearing system. The high-speed tests are operated up to 160 krpm. The vibration spectrum indicates that the rotor–air foil bearing system operates under stable conditions. The experimental waterfall plots also show very small subsynchronous vibrations with frequency locked to the system natural frequency. Overall, this work demonstrates potential capability of the air foil bearings in supporting a shaft with a large overhung mass at high speed.


2021 ◽  
Author(s):  
Fangcheng Xu ◽  
Jianhua Chu ◽  
Wenlin Luan ◽  
Guang Zhao

Abstract In this paper, single-bump foil models with different thickness and double-bump foil models with different initial clearances are established. The structural stiffness and equivalent viscous damping of double-bump foil and single-bump foil are analyzed by finite element simulation. The results show that the double-layer bump foil has variable stiffness and the displacement of the upper bump is greater than the initial gap when the two-layer bumps contact. A model for obtaining static characteristics of aerodynamic compliant foil thrust bearing is established on the basis of the stiffness characteristics of the double-bump foil. This paper solves gas Reynolds equation, the gas film thickness equation and the foil stiffness characteristic equation via the finite element method and the finite difference method. The static characteristics of the thrust bearings including the bearing pressure distribution, the gas film thickness and the friction power consumption have been obtained. The static characteristics of two kinds of foils have been compared and analyzed, and the effect of initial clearance on the static performance of double-bump foil bearings is studied. The results show that the double-bump foil structure can effectively improve the load capacity of thrust bearing. In addition, the static performance of double-bump foil thrust bearings is between the performance of the single-bump foil bearing and the double-bump foil bearing whose foil’s clearance is zero. The smaller the initial clearance is, the easier it will be to form a stable double-bump foil supporting structure.


Author(s):  
Kamal Kumar Basumatary ◽  
Gaurav Kumar ◽  
Karuna Kalita ◽  
Sashindra K Kakoty

Rotors supported on gas foil bearings have low damping characteristics, which limits its application. A possible solution could be an integration of a gas foil bearing with an electromagnetic actuator. This paper discusses the effect of electromagnetic actuators on the stability of a rotor supported on gas foil bearings. A coupled dynamic model combining the dynamics of gas foil bearing and electromagnetic actuator has been developed. The fluid film forces from the gas foil bearings and the electromagnetic forces from the electromagnetic actuators are integrated into the equations of motion of the rotor. The sub-synchronous vibration present in case of conventional gas foil bearings is reduced and the stability band of the rotor is increased due to the implementation of electromagnetic actuator.


Sign in / Sign up

Export Citation Format

Share Document