Graphical Determination of Optimum Trajectories for Third-Order Systems

1970 ◽  
Vol 92 (2) ◽  
pp. 271-278
Author(s):  
Yousri M. Abd-El-Fattah

The present paper explains the use of two phase planes in the graphical determination of optimum trajectories for third-order systems, depending on the sign of a single control function. The control function is defined on these planes by means of different contours. Accordingly, the control signal is known at the different points on these planes. Once the control signal is found, the state trajectory is determined. Most of the arbitrary initial states are treated and, in particular, the cases of separate steps in each of the error and its first as well as second time derivatives. This work also explains the use of the graphical solution in obtaining the maximum error and switching times.

1967 ◽  
Vol 27 (3) ◽  
pp. 431-443 ◽  
Author(s):  
I. Wygnanski

Solutions to the problem of a two-dimensional, laminar jet of incompressible fluid issuing into a uniform stream in the direction of the main flow are considered. Two co-ordinate-type expansions are developed. A direct expansion, when suitably transformed, predicts approximately the velocity along the plane of symmetry of the jet for all values of the abscissa, with a maximum error of 7·6% far downstream from the origin. This error is established by comparison with a second, asymptotic expansion valid only at large values of the abscissa. The two expansions are subsequently joined, permitting an approximate determination of a constant which multiplies a third-order term in the asymptotic series and which initially remained unknown even after satisfying all boundary conditions imposed on these series.The decay of velocity excess along the plane of symmetry of the jet is accelerated by the presence of the external stream.


1983 ◽  
Vol 48 (3) ◽  
pp. 842-853
Author(s):  
Kurt Winkler ◽  
František Kaštánek ◽  
Jan Kratochvíl

Specific gas-liquid interfacial area in flow tubes 70 mm in diameter of the length 725 and 1 450 mm resp. containing various swirl bodies were measured for concurrent upward flow in the ranges of average gas (air) velocities 11 to 35 ms-1 and liquid flow rates 13 to 80 m3 m-2 h-1 using the method of CO2 absorption into NaOH solutions. Two different flow regimes were observed: slug flow swirled annular-mist flow. In the latter case the determination was carried out separately for the film and spray flow components, respectively. The obtained specific areas range between 500 to 20 000 m3 m-2. Correlation parameters are energy dissipation criteria, related to the geometrical reactor volume and to the static liquid volume in the reactor.


1985 ◽  
Vol 50 (8) ◽  
pp. 1642-1647 ◽  
Author(s):  
Štefan Baláž ◽  
Anton Kuchár ◽  
Ernest Šturdík ◽  
Michal Rosenberg ◽  
Ladislav Štibrányi ◽  
...  

The distribution kinetics of 35 2-furylethylene derivatives in two-phase system 1-octanol-water was investigated. The transport rate parameters in direction water-1-octanol (l1) and backwards (l2) are partition coefficient P = l1/l2 dependent according to equations l1 = logP - log(βP + 1) + const., l2 = -log(βP + 1) + const., const. = -5.600, β = 0.261. Importance of this finding for assesment of distribution of compounds under investigation in biosystems and also the suitability of the presented method for determination of partition coefficients are discussed.


2021 ◽  
Vol 655 (1) ◽  
pp. 012024
Author(s):  
O.H. Ajesi ◽  
M.B. Latif ◽  
S.T. Gbenu ◽  
C. A. Onumejor ◽  
M. K. Fasasi ◽  
...  

Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1462
Author(s):  
Ming-Fa Tsai ◽  
Chung-Shi Tseng ◽  
Po-Jen Cheng

This paper presents the design and implementation of an application-specific integrated circuit (ASIC) for a discrete-time current control and space-vector pulse-width modulation (SVPWM) with asymmetric five-segment switching scheme for AC motor drives. As compared to a conventional three-phase symmetric seven-segment switching SVPWM scheme, the proposed method involves five-segment two-phase switching in each switching period, so the inverter switching times and power loss can be reduced by 33%. In addition, the produced PWM signal is asymmetric with respect to the center-symmetric triangular carrier wave, and the voltage command signal from the discrete-time current control output can be given in each half period of the PWM switching time interval, hence increasing the system bandwidth and allowing the motor drive system with better dynamic response. For the verification of the proposed SVPWM modulation scheme, the current control function in the stationary reference frame is also included in the design of the ASIC. The design is firstly verified by using PSIM simulation tool. Then, a DE0-nano field programmable gate array (FPGA) control board is employed to drive a 300W permanent-magnet synchronous motor (PMSM) for the experimental verification of the ASIC.


2021 ◽  
Vol 415 ◽  
pp. 128975
Author(s):  
Xiangqian Li ◽  
Mengqing Li ◽  
Yuze Chen ◽  
Gongxi Qiao ◽  
Qian Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document