Deformation and Curvatures in Sheet-Metal in the Bulge Test

1979 ◽  
Vol 101 (3) ◽  
pp. 341-347 ◽  
Author(s):  
H. M. Shang ◽  
T. C. Hsu¨

The displacements and strains of a circular specimen subjected to hydraulic pressure are studied and are compared with theoretical results predicted by previous investigators. By proposing a concept called prolateness, which gives an indication of the deviation of a local surface from a perfect sphere, it is found that the shape of the deformed bulge is not as simple as it has often been thought to be—the prolateness of a bulge is never constant at any deformation stage. Results also show that, between the beginning and the end of the forming process, there are the initial, stable and unstable regimes of deformation.

1985 ◽  
Vol 107 (4) ◽  
pp. 372-378 ◽  
Author(s):  
H. M. Shang ◽  
F. S. Chau ◽  
C. J. Tay ◽  
S. L. Toh

In this investigation, the clamped portion of copper test specimens is allowed to be drawn slightly into the die throat when hydroformed into axisymmetrical shells. Changing the blank holding load results in different draw-in characteristics. In general, the drawing-in action affects the shape of the shell and also lowers the severity of the deformation and surface area of the deformed shell. Although the nominal thickness uniformity of shells formed with draw-in permitted is improved, the actual thickness is less uniformly distributed. Experimental results also show that, at the beginning of the forming process, the infeeding material due to draw-in is unstretched; but as deformation progresses, stretching of the infeeding material becomes necessary for attaining higher polar heights. The findings of this investigation show that care should be taken in interpreting the test results when the bulge test is used as a formability test. The results also have relevance to many current studies on the “limiting dome height” test for sheet metal.


2013 ◽  
Vol 554-557 ◽  
pp. 1290-1297 ◽  
Author(s):  
Selmi Naceur ◽  
Bel Hadj Salah Hedi

FINITE ELEMENT AND EXPERIMENTAL INVESTIGATIONS OF THE MULTI-POINT FLEXIBLE HYDOFORMING. N. Selmi*, H. BelHadjSalah* *Mechanical Engineering Laboratory (LGM), National Engineering School of Monastir (ENIM), University of Monastir, Avenue Ibn El Jazzar 5019, Monastir, Tunisia. [email protected], [email protected]. ABSTRACT Multi-point flexible forming (MPF) process is relatively recent flexible techniques [1], instead of the conventional fixed shape die sets, the basic idea in this process, consist to form the sheet metal between a pair of opposed matrices of punch elements, by adjusting the height of the punch elements [2]. Production of many parts with different geometry will be possible, just by using one same device and the need to design and manufacturing of various dies will be avoided that lead to great saving in time and manufacturing cost specially in the field of small batch or single production. The hydroforming process is attractive compared with conventional solid die forming processes, the basic idea consist to suppress one tool of two forming tools (punch or die), which is replaced by hydraulic pressure, only one tool is necessary to define the final shape of formed sheet. The multipoint flexible hydroforming, proposed in this paper, is an original process which combines the hydroforming and the multipoint flexible forming [3], to obtain a synergy of the advantages of both processes. The new process, subject of this work, is a combination of the last described processes that keep the whole flexibility of the basic multipoint flexible forming (with two dies), by using, only at one side, a single multipoint die to perform completely the final part shape, the fluid pressure is applied on the other side of the sheet metal part and substitutes advantageously the second die. Firstly, investigations were carried out by numerical simulation, to quantify, the effect of the most influent parameters on the process performances, and to highlight the ability of this new process, in the production of complex forms, as well as its contribution in quality, placed with regards existing flexible processes. Secondly, to prove the feasibility and to carry out a valuable experimental investigation of the multipoint flexible hydroforming, an experimental prototype was designed and realized, and successful doubly curved shell shape parts were obtained by the new process testing set up. The part profiles and the thickness distribution were in agreement with those obtained by numerical investigation furthermore, numerical investigation for efficient methods to suppress the dimpling phenomenon and edge buckling were confirmed by experimental investigation. From investigations it appears that the parameters attached to the discreet character of the multipoint tool, have an important effect on the quality of the final metal sheet product, such as, the punch elements density, the punch elements extremity curvature radius, the blank and the elastomeric interpolator thicknesses. From simulation results, it emerges essentially, that an adequate setting of parameters can upgrade the thickness distribution, reduce the residual stress and attenuate the dimples. References: [1] Zhong-Yi Cai, Shao-Hui Wanga, Ming-Zhe Li, (2008), Numerical investigation of multi-point forming process for sheet metal: wrinkling, dimpling and spring back, Int J Adv Manuf Technol (2008) 37:927–936. [2] Zhong-Yi Cai, Shao-Hui Wang, Xu-Dong Xu, Ming-Zhe Li (2009), Numerical simulation for the multi-point stretch forming process of sheet metal, journal of materials processing technology 209 (2009) 396–407. [3] N. Selmi, H. Bel hadj salah, Simulation numérique de l’hydroformage à matrice flexible, 7éme journées scientifiques en mécanique et matériaux JSTMM2010, Hammamet 26-27 novembre2010.


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 685
Author(s):  
Manuel Prado-Velasco ◽  
Rafael Ortiz-Marín

The emergence of computer-aided design (CAD) has propelled the evolution of the sheet metal engineering field. Sheet metal design software tools include parameters associated to the part’s forming process during the pattern drawing calculation. Current methods avoid the calculation of a first pattern drawing of the flattened part’s neutral surface, independent of the forming process, leading to several methodological limitations. The study evaluates the reliability of the Computer Extended Descriptive Geometry (CeDG) approach to surpass those limitations. Three study cases that cover a significative range of sheet metal systems are defined and the associated solid models and patterns’ drawings are computed through Geogebra-based CeDG and two selected CAD tools (Solid Edge 2020, LogiTRACE v14), with the aim of comparing their reliability and accuracy. Our results pointed to several methodological lacks in LogiTRACE and Solid Edge that prevented to solve properly several study cases. In opposition, the novel CeDG approach for the computer parametric modeling of 3D geometric systems overcame those limitations so that all models could be built and flattened with accuracy and without methodological limitations. As additional conclusion, the success of CeDG suggests the necessity to recover the relevance of descriptive geometry as a key core in graphic engineering.


Procedia CIRP ◽  
2014 ◽  
Vol 18 ◽  
pp. 203-208 ◽  
Author(s):  
J. Enz ◽  
S. Riekehr ◽  
V. Ventzke ◽  
N. Sotirov ◽  
N. Kashaev

2013 ◽  
Vol 423-426 ◽  
pp. 737-740
Author(s):  
Zhong Yi Cai ◽  
Mi Wang ◽  
Chao Jie Che

A new stretch-forming process based on discretely loading for three-dimensional sheet metal part is proposed and numerically investigated. The gripping jaw in traditional stretch-forming process is replaced by the discrete array of loading units, and the stretching load is applied at discrete points on the two ends of sheet metal. By controlling the loading trajectory at the each discrete point, an optimal stretch-forming process can be realized. The numerical results on the new stretch-forming process of a saddle-shaped sheet metal part show that the distribution of the deformation on the formed surface of new process is more uniform than that of traditional stretch-forming, and the forming defects can be avoided and better forming quality will be obtained.


2005 ◽  
Vol 6-8 ◽  
pp. 771-778 ◽  
Author(s):  
M. Redecker ◽  
Karl Roll ◽  
S. Häussinger

In recent years very strong efforts have been undertaken to build light weight structures of car bodies in the automotive industry. Structural technologies like Space Frame, tailored blanks and relief-embossed panels are well-known and already in use. Beside that there is a large assortment of design materials with low density or high strength. Magnesium alloys are lighter by approximately 34 percent than aluminum alloys and are considered to be the lightest metallic design material. However forming processes of magnesium sheet metal are difficult due to its complex plasticity behavior. Strain rate sensitivity, asymmetric and softening yield behavior of magnesium are leading to a complex description of the forming process. Asymmetric yield behavior means different yield stress depending on tensile or compressive loading. It is well-known that elevated temperatures around 200°C improve the local flow behavior of magnesium. Experiments show that in this way the forming limit curves can be considerably increased. So far the simulation of the forming process including temperature, strain rates and plastic asymmetry is not state-of-the-art. Moreover, neither reliable material data nor standardized testing procedures are available. According to the great attractiveness of magnesium sheet metal parts there is a serious need for a reliable modeling of the virtual process chain including the specification of required mechanical properties. An existing series geometry which already can be made of magnesium at elevated temperatures is calculated using the finite element method. The results clarify the failings of standard calculation methods and show potentials of its improvement.


1994 ◽  
Vol 376 ◽  
Author(s):  
V.L. Aksenov ◽  
A.M. Balagurov ◽  
G.D Bokuchava ◽  
J. Schreiber ◽  
Yu.V. Taran Frank

ABSTRACTVariation of internal stress states in cold rolled sheet metal can essentially influence the result of forming processes. Therefore it is important to control the forming process by a practicable in line testing method. For this purpose magnetic and ultrasonic nondestructive methods are available. However, it is necessary to calibrate these techniques. This paper describes a first step of such a calibration procedure making use of the neutron diffraction method. On the basis of the diffraction results an assessment of the magnetic and ultrasonic methods for the estimation of residual stress in the cold rolled iron-disks was made. Reasonable measuring concepts for practical applications to forming processes with cold rolled sheet metal are discussed.


2013 ◽  
Vol 554-557 ◽  
pp. 1375-1381 ◽  
Author(s):  
Laurence Giraud-Moreau ◽  
Abel Cherouat ◽  
Jie Zhang ◽  
Houman Borouchaki

Recently, new sheet metal forming technique, incremental forming has been introduced. It is based on using a single spherical tool, which is moved along CNC controlled tool path. During the incremental forming process, the sheet blank is fixed in sheet holder. The tool follows a certain tool path and progressively deforms the sheet. Nowadays, numerical simulations of metal forming are widely used by industry to predict the geometry of the part, stresses and strain during the forming process. Because incremental forming is a dieless process, it is perfectly suited for prototyping and small volume production [1, 2]. On the other hand, this process is very slow and therefore it can only be used when a slow series production is required. As the sheet incremental forming process is an emerging process which has a high industrial interest, scientific efforts are required in order to optimize the process and to increase the knowledge of this process through experimental studies and the development of accurate simulation models. In this paper, a comparison between numerical simulation and experimental results is realized in order to assess the suitability of the numerical model. The experimental investigation is realized using a three-axis CNC milling machine. The forming tool consists in a cylindrical rotating punch with a hemispherical head. A subroutine has been developed to describe the tool path from CAM procedure. A numerical model has been developed to simulate the sheet incremental forming process. The finite element code Abaqus explicit has been used. The simulation of the incremental forming process stays a complex task and the computation time is often prohibitive for many reasons. During this simulation, the blank is deformed by a sequence of small increments that requires many numerical increments to be performed. Moreover, the size of the tool diameter is generally very small compared to the size of the metal sheet and thus the contact zone between the tool and the sheet is limited. As the tool deforms almost every part of the sheet, small elements are required everywhere in the sheet resulting in a very high computation time. In this paper, an adaptive remeshing method has been used to simulate the incremental forming process. This strategy, based on adaptive refinement and coarsening procedures avoids having an initially fine mesh, resulting in an enormous computing time. Experiments have been carried out using aluminum alloy sheets. The final geometrical shape and the thickness profile have been measured and compared with the numerical results. These measurements have allowed validating the proposed numerical model. References [1] M. Yamashita, M. Grotoh, S.-Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Processing Technology, No. 199 (2008), p. 163 172. [2] C. Henrard, A.M. Hbraken, A. Szekeres, J.R. Duflou, S. He, P. Van Houtte, Comparison of FEM Simulations for the Incremental Forming Process, Advanced Materials Research, 6-8 (2005), p. 533-542.


2006 ◽  
Vol 510-511 ◽  
pp. 330-333
Author(s):  
M.C. Curiel ◽  
Ho Sung Aum ◽  
Joaquín Lira-Olivares

Numerical simulations based on Finite Element Analysis (FEA) are widely used to predict and evaluate the forming parameters before performing the physical processes. In the sheet metal industry, there are basically two types of FE programs: the inverse (one-step) programs and the incremental programs. In the present paper, the forming process of the shield case piece (LTA260W1-L05) was optimized by performing simulations with both types of software. The main analyzed parameter was the blankholding force while the rest of the parameters were kept constant. The criteria used to determine the optimum value was based on the Forming Limit Diagram (FLD), fracture and wrinkling of the material, thickness distribution, and the principal strains obtained. It was found that the holding force during the forming process deeply affects the results, and a range of values was established in which the process is assumed to give a good quality piece.


2010 ◽  
Vol 154-155 ◽  
pp. 166-170
Author(s):  
Gai Pin Cai ◽  
Ning Yuan Zhu ◽  
Na Wen

As a non-homogenous force stresses during incremental forming, sheet metal easily tended to instability, and some defects, such as deposition, wrinkle and fracture, would appear. If the vibration technique was combined the incremental forming process, its deformation mechanism would be different from that of the old process, and sheet metal deformation quality was also risen. Then some mechanical equations were built by force analyzed on element in local contact zone of die head forcing down. According to reasonable hypothesis and simplified, the equations were solved. Some stress-time curves of the element were obtained by given process parameters, vibrational parameters and time parameters. It is shown from analysis that stress variety of the element is closely related to amplitude, frequency and forming angle, effect of sheet metal vibration incremental forming with high frequency vibration is more superior than that of with low frequency vibration; only when vibrational parameters are reasonably matching technical parameters, the effective vibration incremental forming can be obtained.


Sign in / Sign up

Export Citation Format

Share Document