Finite Element and Experimental Investigation of the Multipoint Flexible Hydroforming

2013 ◽  
Vol 554-557 ◽  
pp. 1290-1297 ◽  
Author(s):  
Selmi Naceur ◽  
Bel Hadj Salah Hedi

FINITE ELEMENT AND EXPERIMENTAL INVESTIGATIONS OF THE MULTI-POINT FLEXIBLE HYDOFORMING. N. Selmi*, H. BelHadjSalah* *Mechanical Engineering Laboratory (LGM), National Engineering School of Monastir (ENIM), University of Monastir, Avenue Ibn El Jazzar 5019, Monastir, Tunisia. [email protected], [email protected]. ABSTRACT Multi-point flexible forming (MPF) process is relatively recent flexible techniques [1], instead of the conventional fixed shape die sets, the basic idea in this process, consist to form the sheet metal between a pair of opposed matrices of punch elements, by adjusting the height of the punch elements [2]. Production of many parts with different geometry will be possible, just by using one same device and the need to design and manufacturing of various dies will be avoided that lead to great saving in time and manufacturing cost specially in the field of small batch or single production. The hydroforming process is attractive compared with conventional solid die forming processes, the basic idea consist to suppress one tool of two forming tools (punch or die), which is replaced by hydraulic pressure, only one tool is necessary to define the final shape of formed sheet. The multipoint flexible hydroforming, proposed in this paper, is an original process which combines the hydroforming and the multipoint flexible forming [3], to obtain a synergy of the advantages of both processes. The new process, subject of this work, is a combination of the last described processes that keep the whole flexibility of the basic multipoint flexible forming (with two dies), by using, only at one side, a single multipoint die to perform completely the final part shape, the fluid pressure is applied on the other side of the sheet metal part and substitutes advantageously the second die. Firstly, investigations were carried out by numerical simulation, to quantify, the effect of the most influent parameters on the process performances, and to highlight the ability of this new process, in the production of complex forms, as well as its contribution in quality, placed with regards existing flexible processes. Secondly, to prove the feasibility and to carry out a valuable experimental investigation of the multipoint flexible hydroforming, an experimental prototype was designed and realized, and successful doubly curved shell shape parts were obtained by the new process testing set up. The part profiles and the thickness distribution were in agreement with those obtained by numerical investigation furthermore, numerical investigation for efficient methods to suppress the dimpling phenomenon and edge buckling were confirmed by experimental investigation. From investigations it appears that the parameters attached to the discreet character of the multipoint tool, have an important effect on the quality of the final metal sheet product, such as, the punch elements density, the punch elements extremity curvature radius, the blank and the elastomeric interpolator thicknesses. From simulation results, it emerges essentially, that an adequate setting of parameters can upgrade the thickness distribution, reduce the residual stress and attenuate the dimples. References: [1] Zhong-Yi Cai, Shao-Hui Wanga, Ming-Zhe Li, (2008), Numerical investigation of multi-point forming process for sheet metal: wrinkling, dimpling and spring back, Int J Adv Manuf Technol (2008) 37:927–936. [2] Zhong-Yi Cai, Shao-Hui Wang, Xu-Dong Xu, Ming-Zhe Li (2009), Numerical simulation for the multi-point stretch forming process of sheet metal, journal of materials processing technology 209 (2009) 396–407. [3] N. Selmi, H. Bel hadj salah, Simulation numérique de l’hydroformage à matrice flexible, 7éme journées scientifiques en mécanique et matériaux JSTMM2010, Hammamet 26-27 novembre2010.

Materials ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 337 ◽  
Author(s):  
Jian Xing ◽  
Yan-yan Cheng ◽  
Zhuo Yi

To improve the effect of multi-point stretch forming of sheet metal, it is proposed in this paper to replace a fixed ball head with a swinging ball head. According to the multi-point dies with different arrangements, this research establishes finite element models of the following stretch forming, i.e., fixed ball heads with conventional arrangement, swinging ball heads with conventional arrangement, swinging ball heads with declining staggered arrangement, and swinging ball heads with parallel staggered arrangement, and then numerical simulation is performed. The simulation results show that by replacing a fixed ball head with a swinging ball head, the surface indentation of the part formed was effectively suppressed, the stress and tension strain distribution of the part formed was improved, and the forming quality was improved; the thickness of the elastic pad was reduced, the springback was reduced and the forming accuracy was improved; and when the ball head was applied to a multi-point die with staggered arrangement, a better forming result was achieved, where the best forming result was achieved in combining the swinging ball heads with the multi-point die with a parallel staggered arrangement. Forming experiments were carried out, and the experimental results were consistent with the trend of numerical simulation results, which verified the correctness of the numerical simulation.


2011 ◽  
Vol 239-242 ◽  
pp. 392-397
Author(s):  
Xue Feng Xu ◽  
Ning Li ◽  
Gao Chao Wang ◽  
Hong Bo Dong

A thermal-mechanical coupled analysis of superplastic differential temperature deep drawing (SDTDD) with the MARC finite element code is performed in this paper. Initial drawing blank of an AA5083 bracket was calculated and adjusted according to the simulation result. During the SDTDD simulation, the power-law constitutive model of AA5083 was established as function of temperature and implanted in software MARC through new complied subroutine. Under the guide of the numerical simulation, the die was fabricated and the AA5083 bracket was successfully manufactured via superplastic differential temperature deep drawing. In forming practice, the temperature of female die was kept at 525°C, i.e. the optimal superplastic temperature of AA5083, and the punch was cooled by the flowing water throughout the forming process. The drawing velocity of punch was 0.1mm/s. Results revealed that the formed bracket had a sound uniform thickness distribution. Good agreement was obtained between the formed thickness profiles and the predicted ones.


2015 ◽  
Vol 775 ◽  
pp. 219-223
Author(s):  
Wan Mian Yang ◽  
Yuan Xin Luo ◽  
Zhi Fang Liu ◽  
Ru Xu Du

Multi-point forming process has been developed to shape the sheet metal with bidirectional curvature. However, the forming force usually climbs too high so that the dimension of the forming machine should be designed to meet it. To solve this problem, the multi-point incremental forming (MPIF) process was proposed in this paper. First, the principle of this new forming process was introduced. Then, the experimental device was designed. Next, the MPIF process was simulated by a finite element model. The forming effects including displacements, thickness, and curvatures were visualized and discussed in detail. It was found that there is no obvious thickness change during the forming process. The advantage of this forming process is that the shape of the sheet metals adaptable and controllable with small forming force.


2011 ◽  
Vol 110-116 ◽  
pp. 1512-1518
Author(s):  
Hao Han Zhang ◽  
Ming Zhe Li ◽  
Wen Zhi Fu ◽  
Peng Xiao Feng

Multi-roll stretch forming process is a new flexible manufacturing technique that the general idea of discretizing is put in use in the design of stretch forming machine. In the new process, the metal sheet can be more easily formed, and the flexibility can be much higher, which the traditional process cannot compare with. In this paper, in through extensive numerical simulations of the MRSF stretching process of toroidal saddle parts, A series of finite element simulations have done for the process of forming toroidal saddle parts using different lubricant and two kinds of rollers named damped rollers and ordinary rollers. The results show that the smaller the friction coefficient is, the easier the center of toroidal saddle part is stretched. Damped rollers can increase the stretching force and the ordinary rollers can increase the mobility of sheet metal. Arranging the damped rollers and ordinary rollers at a reasonable position can make the workpiece a more uniform stretching.


2011 ◽  
Vol 291-294 ◽  
pp. 269-272
Author(s):  
Ying Wu Lan ◽  
Zhong Yi Cai ◽  
Ming Zhe Li

The deformation of sheet metal in the continuous flexible forming (CFF) process is complex and the formed result is affected by many factors. In this paper, the finite element model of CFF was founded and the forming processes of spherical parts were simulated with the software ABAQUS. The interaction between transversal deformation and longitudinal deformation in the CFF process is analyzed. Based on results of numerical simulation and forming tests, the process parameters of CFF is revised, and formed surface is measured by three dimensional sensing system, the measured results indicate the precision of formed parts are satisfactory.


2011 ◽  
Vol 460-461 ◽  
pp. 32-35
Author(s):  
Wei Hua Kuang

In order to improve the hydro-forming accuracy, the process parameter’s effect on the technology was studied by using finite element method. The numerical simulation model of the forming process was established. The deformation and thinning were studied. The FLD was used to determine the safe limit of the sheet metal operation. FLD showed that the cylindrical hydro-drawing process could be successfully done in one stroke.


2012 ◽  
Vol 735 ◽  
pp. 162-169 ◽  
Author(s):  
Gilles Marin ◽  
Fabien Nazaret ◽  
Olivier Barrau ◽  
Nicolas Guegan ◽  
Benoit Marguet ◽  
...  

The rear part of the APF A380 has a deep drawn shape. In order to develop the forming by SPF process of this part, numerical simulation by finite elements has been performed. Several configurations for 2D and 3D modeling were studied to determine an efficient forming strategy. A double-action solution was chosen. It ensures a satisfactory thickness distribution. This article will deal with the modeling assumptions, the results of individual cases of calculation and comparison with parts obtained at the Airbus plant.


2013 ◽  
Vol 423-426 ◽  
pp. 737-740
Author(s):  
Zhong Yi Cai ◽  
Mi Wang ◽  
Chao Jie Che

A new stretch-forming process based on discretely loading for three-dimensional sheet metal part is proposed and numerically investigated. The gripping jaw in traditional stretch-forming process is replaced by the discrete array of loading units, and the stretching load is applied at discrete points on the two ends of sheet metal. By controlling the loading trajectory at the each discrete point, an optimal stretch-forming process can be realized. The numerical results on the new stretch-forming process of a saddle-shaped sheet metal part show that the distribution of the deformation on the formed surface of new process is more uniform than that of traditional stretch-forming, and the forming defects can be avoided and better forming quality will be obtained.


2011 ◽  
Vol 474-476 ◽  
pp. 251-254
Author(s):  
Jian Jun Wu ◽  
Wei Liu ◽  
Yu Jing Zhao

The multi-step forward finite element method is presented for the numerical simulation of multi-step sheet metal forming. The traditional constitutive relationship is modified according to the multi-step forming processes, and double spreading plane based mapping method is used to obtain the initial solutions of the intermediate configurations. To verify the multi-step forward FEM, the two-step simulation of a stepped box deep-drawing part is carried out as it is in the experiment. The comparison with the results of the incremental FEM and test shows that the multi-step forward FEM is efficient for the numerical simulation of multi-step sheet metal forming processes.


2013 ◽  
Vol 554-557 ◽  
pp. 1375-1381 ◽  
Author(s):  
Laurence Giraud-Moreau ◽  
Abel Cherouat ◽  
Jie Zhang ◽  
Houman Borouchaki

Recently, new sheet metal forming technique, incremental forming has been introduced. It is based on using a single spherical tool, which is moved along CNC controlled tool path. During the incremental forming process, the sheet blank is fixed in sheet holder. The tool follows a certain tool path and progressively deforms the sheet. Nowadays, numerical simulations of metal forming are widely used by industry to predict the geometry of the part, stresses and strain during the forming process. Because incremental forming is a dieless process, it is perfectly suited for prototyping and small volume production [1, 2]. On the other hand, this process is very slow and therefore it can only be used when a slow series production is required. As the sheet incremental forming process is an emerging process which has a high industrial interest, scientific efforts are required in order to optimize the process and to increase the knowledge of this process through experimental studies and the development of accurate simulation models. In this paper, a comparison between numerical simulation and experimental results is realized in order to assess the suitability of the numerical model. The experimental investigation is realized using a three-axis CNC milling machine. The forming tool consists in a cylindrical rotating punch with a hemispherical head. A subroutine has been developed to describe the tool path from CAM procedure. A numerical model has been developed to simulate the sheet incremental forming process. The finite element code Abaqus explicit has been used. The simulation of the incremental forming process stays a complex task and the computation time is often prohibitive for many reasons. During this simulation, the blank is deformed by a sequence of small increments that requires many numerical increments to be performed. Moreover, the size of the tool diameter is generally very small compared to the size of the metal sheet and thus the contact zone between the tool and the sheet is limited. As the tool deforms almost every part of the sheet, small elements are required everywhere in the sheet resulting in a very high computation time. In this paper, an adaptive remeshing method has been used to simulate the incremental forming process. This strategy, based on adaptive refinement and coarsening procedures avoids having an initially fine mesh, resulting in an enormous computing time. Experiments have been carried out using aluminum alloy sheets. The final geometrical shape and the thickness profile have been measured and compared with the numerical results. These measurements have allowed validating the proposed numerical model. References [1] M. Yamashita, M. Grotoh, S.-Y. Atsumi, Numerical simulation of incremental forming of sheet metal, J. Processing Technology, No. 199 (2008), p. 163 172. [2] C. Henrard, A.M. Hbraken, A. Szekeres, J.R. Duflou, S. He, P. Van Houtte, Comparison of FEM Simulations for the Incremental Forming Process, Advanced Materials Research, 6-8 (2005), p. 533-542.


Sign in / Sign up

Export Citation Format

Share Document