The Fluid Dynamics of a Shrouded Disk System With a Radial Outflow of Coolant

1970 ◽  
Vol 92 (3) ◽  
pp. 335-341 ◽  
Author(s):  
F. J. Bayley ◽  
J. M. Owen

This paper describes an experimental study of an air-cooled gas turbine disk using the model of a disk rotating near a shrouded stator. Measurements of pressure distribution, frictional moment, and the cooling air flow necessary to prevent the ingress of hot gases over the turbine disk are described for a range of rotational speeds, mass flow rates, and different geometries. The pressure distribution is shown to be calculable by the superposition of the pressure drop due to the shroud and the unshrouded distribution. Moment coefficients are shown to increase with increasing mass flow rate and decreasing shroud clearance, but are little affected by the rotor/stator gap. Applying Reynolds analogy to the moment coefficients, it is estimated that heat transfer from the rotor will be controlled primarily by rate of radial cooling flow at low rotational Reynolds numbers, and will be governed primarily by Reynolds number at large rotational speeds.

2021 ◽  
Author(s):  
Barbara Fiedler ◽  
Yannick Muller ◽  
Matthias Voigt ◽  
Ronald Mailach

Abstract The engine-cycle performance of jet engines can be improved by more efficient cooling systems, either by reducing the required cooling air or by intensifying the cooling efficiency with the same amount of cooling mass flow. However, the multitude of geometrical design parameters and the strong multidisciplinary aspect of cooling mass flow consumption optimization make designing the cooling systems extremely challenging. Integrating probabilistic methods into the thermal design process enables the automated evaluation of multiple design variants which contributes to the development of more efficient systems. In the present study, the sensitivity of a multi-pass cooling system to geometric variations is investigated. The cooling air flow, solved using a 1D, correlation based flow solver, is iteratively coupled with the 3D-FE thermo-mechanical analysis of the blade. The geometry of the cooling system is varied using the Harmonic-Spline-Deformation parametric, which has been extended to modify the wall thickness enabling to perform a geometrical-holistic analysis. Furthermore, the Elementary-Effects-Method (EEM) and the Monte-Carlo-Simulation (MCS) are compared to identify the most influential parameters and analyze their complex interactions. It is shown that the cooling system’s performance is mostly affected by the shape and position of the first web. Furthermore, MCS proves to be robust towards changes in design space while simultaneously enabling a more detailed analysis of the system behavior compared to EEM.


Author(s):  
Z. B. El-Oun ◽  
J. M. Owen

Blade-cooling air for a high-pressure turbine is often supplied from pre-swirl nozzles attached to a stationary casing. By swirling the cooling air in the direction of rotation of the turbine disc, the temperature of the air relative to the blades can be reduced. The question addressed in this paper is: knowing the temperatures of the pre-swirl and disc-cooling flows, what is the temperature of the blade-cooling air? A simple theoretical model, based on the Reynolds analogy applied to an adiabatic rotor-stator system, is used to calculate the pre-swirl effectiveness (that is, the reduction in the temperature of the blade-cooling air as a result of pre-swirling the flow). A mixing model is used to account for the ‘contamination’ of the blade-coolant with disc-cooling air, and an approximate solution is used to estimate the effect of frictional heating on the disc-cooling air. Experiments were conducted in a rotor-stator rig which had pre-swirl nozzles in the stator and blade-cooling passages in the rotating disc. A radial outflow or inflow of disc-cooling air was also supplied, and measurements of the temperature difference between the pre-swirl and blade-cooling air were made for a range of flow rates and for rotational Reynolds numbers up to Reθ = 1.8 × 106. Considering the experimental errors in measuring the small temperature differences, good agreement between theory and experiment was achieved.


Author(s):  
Alexander D. W. Pett ◽  
Daniel D. Coren ◽  
Peter R. N. Childs

This paper analyses numerical and experimental data gathered from a shrouded rotor-stator wheelspace supplied with a radial outflow of cooling air introduced along its central axis. Computational Fluid Dynamics (CFD) investigations into plain disc, roughened disc, roughened stator and stator protrusions were carried out and the results compared to previously gathered experimental data in order to validate the CFD code and improve confidence in its ability to model the given situations. Comparisons of cooling air flow enthalpy rises, torques required to drive the disc and one-sided moment coefficients for the disc have been made between the experimental and the computational models and agreement was obtained across the range of nondimensional numbers analysed. For the plain disc analyses this agreement was within 2% to 15% and was from 6% to 20% for the static protrusions on the stator. Results for the roughness on the rotor models corresponded closely with the experimental findings of previous authors. It was also confirmed that increasing roughness on the rotor increased moment coefficient and that increasing roughness from hydrodynamically smooth up to a roughness ratio of 1125 (corresponding to a roughness height of 0.2 mm) caused a doubling of torque at all rotational and throughflow Reynolds numbers. The same magnitude of roughness on stator was also found to double the torque experienced by the stationary casing but this only corresponded to a 5% increase in disc moment coefficient.


1989 ◽  
Vol 111 (4) ◽  
pp. 522-529 ◽  
Author(s):  
Z. B. El-Oun ◽  
J. M. Owen

Blade-cooling air for a high-pressure turbine is often supplied from preswirl nozzles attached to a stationary casing. By swirling the cooling air in the direction of rotation of the turbine disk, the temperature of the air relative to the blades can be reduced. The question addressed in this paper is: Knowing the temperatures of the preswirl and disk-cooling flows, what is the temperature of the blade-cooling air? A simple theoretical model, based on the Reynolds analogy applied to an adiabatic rotor–stator system, is used to calculate the preswirl effectiveness (that is, the reduction in the temperature of the blade-cooling air as a result of preswirling the flow). A mixing model is used to account for the “contamination” of the blade coolant with disk-cooling air, and an approximate solution is used to estimate the effect of frictional heating on the disk-cooling air. Experiments were conducted in a rotor–stator rig that had preswirl nozzles in the stator and blade-cooling passages in the rotating disk. A radial outflow or inflow of disk-cooling air was also supplied, and measurements of the temperature difference between the preswirl and blade-cooling air were made for a range of flow rates and for rotational Reynolds numbers up to Reθ = 1.8 × 106. Considering the experimental errors in measuring the small temperature differences, good agreement between theory and experiment was achieved.


Author(s):  
Gaowen Liu ◽  
Zhao Lei ◽  
Aqiang Lin ◽  
Qing Feng ◽  
Yan Chen

The pre-swirl system is of great importance for temperature drop and cooling air supply. This study aims to investigate the influencing mechanism of heat transfer, nonuniform thermodynamic characteristics, and cooling air supply sensitivity in a pre-swirl system by the application of the flow control method of the pre-swirl nozzle. A novel test rig was proposed to actively control the supplied cooling air mass flow rate by three adjustable pre-swirl nozzles. Then, the transient problem of the pre-swirl system was numerically conducted by comparison with 60°, 120°, and 180° rotating disk cavity cases, which were verified with the experiment results. Results show that the partial nozzle closure will aggravate the fluctuation of air supply mass flow rate and temperature. When three parts of nozzles are closed evenly at 120° in the circumferential direction, the maximum value of the nonuniformity coefficient of air supply mass flow rate changes to 3.1% and that of temperature changes to 0.25%. When six parts of nozzles are closed evenly at 60° in the circumferential direction, the maximum nonuniformity coefficient of air supply mass flow rate changes to 1.4% and that of temperature changes to 0.20%. However, different partial nozzle closure modes have little effect on the average air supply parameters. Closing 14.3% of the nozzle area will reduce the air supply mass flow rate by 9.9% and the average air supply temperature by about 1 K.


Author(s):  
G. H. Dibelius ◽  
M. Heinen

The local heat transfer from a plane rotating disc enclosed in a casing has been studied experimentally. The disc of 800 mm diameter can be run up to 2000 min−1 at axial distances between disc and casing varied between 5 and 55 mm. Centrifugal or alternatively centripetal flow of cooling air at rates up to ṁ = 1 kg/s can be applied, both with or without an inlet swirl. With the disc rotating in a closed casing (ṁ = 0 kg/s) the influence of the characteristic dimensionless groups on the local heat transfer has been investigated. At a fixed radius, a variation of the local Reynolds Number by either speed or density results in corresponding changes of the heat transfer. However, with a variation of the radius different heat transfer-Re relations are found. In fact, the temperature distribution in the gas caused by the heat flux results in an additional influence of free convection, to be expressed by a Grashof Number. This is confirmed by a comparison of the experimental results with calculations based on Reynolds Analogy and measured friction coefficients. The discrepancies found can be explained only, if in addition to the limitations of the analogy, the influence of free convection is taken into account. Additional results of ongoing experiments concerning the influence of the geometry of the cavity between disc and casing, of the coolant flow rate and of the swirl are presented.


Author(s):  
Brian M. T. Tang ◽  
Marko Bacic ◽  
Peter T. Ireland

This paper presents a computational investigation into the impact of cooling air injected through the stationary over-tip turbine casing on overall turbine efficiency. The high work axial flow turbine is representative of the high pressure turbine of a civil aviation turbofan engine. The effect of active modulation of the cooling air is assessed, as well as that of the injection locations. The influence of the through-casing coolant injection on the turbine blade over-tip leakage flow and the associated secondary flow features are examined. Transient (unsteady) sliding mesh simulations of a one turbine stage rotor-stator domain are performed using periodic boundary conditions. Cooling air configurations with a constant total pressure air supply, constant mass flow rate and actively controlled total pressure supply are assessed for a single geometric arrangement of cooling holes. The effects of both the mass flow rate of cooling air and the location of its injection relative to the turbine rotor blade are examined. The results show that all of the assessed cooling configurations provided a benefit to turbine row efficiency of between 0.2 and 0.4 percentage points. The passive and constant mass flow rate configurations reduced the over-tip leakage flow, but did so in an inefficient manner, with decreasing efficiency observed with increasing injection mass flow rate beyond 0.6% of the mainstream flow, despite the over-tip leakage mass flow rate continuing to reduce. By contrast, the active total pressure controlled injection provided a more efficient manner of controlling this leakage flow, as it permitted a redistribution of cooling air, allowing it to be applied in the regions close to the suction side of the blade tip which more directly reduced over-tip leakage flow rates and hence improved efficiency. Cooling air injected close to the pressure side of the rotor blade was less effective at controlling the leakage flow, and was associated with increased aerodynamic loss in the passage vortex.


Author(s):  
Liu Jian Jun

An analytical study was undertaken using the performance model of a two spool direct drive high BPR 300kN thrust turbofan engine, to investigate the effects of advanced configurations on overall engine performance. These include variable bypass nozzle, variable cooling air flow and more electric technique. For variable bypass nozzle, analysis on performance of outer fan at different conditions indicates that different operating points cannot meet optimal performance at the same time if the bypass nozzle area kept a constant. By changing bypass nozzle throat area at different states, outer fan operating point moves to the location where airflow and efficiency are more appropriate, and have enough margin away from surge line. As a result, the range of variable area of bypass nozzle throat is determined which ensures engine having a low SFC and adequate stability. For variable cooling airflow, configuration of turbine cooling air flow extraction and methodology for obtaining change of cooling airflow are investigated. Then, base on temperature analysis of turbine vane and blade and resistance of cooling airflow, reduction of cooling airflow is determined. Finally, using performance model which considering effect of cooling air flow on work and efficiency of turbine, variable cooling airflow effect on overall performance is analyzed. For more electric technique, the main characteristic is to use power off-take instead of overboard air extraction. Power off-take and air extraction effect on overall performance of high bypass turbofan engine is compared. Investigation demonstrates that power offtake will have less SFC.


Sign in / Sign up

Export Citation Format

Share Document