Stability of Squeeze-Film-Damper Supported Flexible Rotors

1977 ◽  
Vol 99 (4) ◽  
pp. 545-551 ◽  
Author(s):  
M. D. Rabinowitz ◽  
E. J. Hahn

Assuming the short bearing approximation and symmetric motions, the stability of the steady-state synchronous operation of centrally preloaded single-mass flexible rotors supported in squeeze-film bearing dampers is theoretically investigated. The stability regions are depicted over a wide range of system parameters and allow for easy determination of the stability of existing steady-state design data. The influence of rotor flexibility, rotor speed, bearing dimensions, lubricant viscosity, rotor mass distribution, and rotor unbalance on rotor-bearing system stability may be readily seen. In the absence of pressurization, instability regions were possible even with relatively high support damping, though no instability was indicated for speeds below the support natural frequency, or for bearing eccentricity ratio <0.4 at any speed. Pressurization of the lubricant supply was found to stabilize the system over the whole range of parameters investigated, regardless of unbalance, which would then be limited only by the bearing clearance. Data are presented which enable the minimum supply pressure to ensure full film lubrication to be conveniently determined.

1977 ◽  
Vol 99 (4) ◽  
pp. 552-558 ◽  
Author(s):  
M. D. Rabinowitz ◽  
E. J. Hahn

The synchronous steady-state operation of a centrally preloaded single mass flexible rotor supported in squeeze film bearing dampers is examined theoretically. Assuming the short bearing approximation and symmetric motions, frequency response curves are presented exhibiting the effect of relevant system parameters on rotor excursion amplitudes and unbalance transmissibilities for both pressurized and unpressurized lubricant supply. Hence, the influence of rotor flexibility, rotor mass distribution, rotor speed, bearing dimensions, lubricant viscosity, support flexibility can be readily determined, allowing for optimal rotor bearing system design. It is shown that with pressurized bearing mounts, the possibility of undesirable operation modes is eliminated and a smooth passage through the first pin-pin critical speed of the rotor is feasible, while absence of pressurization significantly limits the maximum safe unbalance in the vicinity of this critical speed. Significant decrease in transmissibility and rotor excursion amplitudes over those obtainable with rigid mounts are shown to be a practical possibility, with consequent decrease in the vibration level of the rotor mounts and prolongation of rolling element bearing life, while maintaining acceptable rotor vibration amplitudes. A design example is included to illustrate the use of the data.


2020 ◽  
Vol 9 (2) ◽  
Author(s):  
Afif Caesar Distara ◽  
Fatkhur Rohman

Electric vehicles are alternative vehicles that carry energy efficient. At this time the dominant vehicle uses ordinary wheels so that it will become an obstacle in the maneuver function that requires movement in various directions. With mechanum wheels the vehicle can move in various directions by adjusting the direction of rotation of each wheel. The problem is choosing the right control system for the control system needed by the vehicle. The purpose of this study is to determine and analyze the effect of variations in the value of PI (Proportional Integral) and speed of the vehicle to the stability response of the system to control the direction of prototype electric vehicles. This study method is an experiment that is by giving a treatment, then evaluating the effects caused by the research object. The results of this study can be concluded that the variation of PI constant values and speed variations have an effect on the stability parameters of the system, namely rise time, settling time, overshot, and steady state error. To get the best system stability response results can use the constant value PI Kp = 2; and Ki = 17; where the stability response of the system for direction control at each speed condition has a fairly good value with a fast rise time, fast settling time, small overshot and a small error steady state compared to other PI constant values in this study.Keywords: mechanum wheel, PI control, direction, prototype, system stability


1972 ◽  
Vol 94 (1) ◽  
pp. 64-69
Author(s):  
K. D. Willmert

In numerically determining the response of a linear second-order multidegree-of-freedom vibrational system subjected to a general excitation, the common approach of applying one of the many multistep methods of numerical analysis (e.g., Milne-Simpson, Adams-Bashforth, etc.) leads ultimately to the solution of a system of linear equations. However, when the mass matrix of the original vibrational system is singular, the coefficient matrix of the system of equations also becomes singular and thus the response cannot be determined. Presented is a means of applying these multistep methods to vibrational systems which results in a method that is capable of obtaining the response independent of the singularity of the mass matrix. This technique is particularly useful in optimization where the values of the parameters of the system are unknown in advance, and thus the method of determining the response must be applicable for a wide range of values of the parameters. In the development and investigation of this technique, the causes of the stability problems which develop from the application of multistep methods to systems with nearly singular mass matrices become apparent.


2018 ◽  
Vol 82 (1) ◽  
pp. 10701
Author(s):  
Xiaohui Gu ◽  
Lining Sun ◽  
Changhai Ru

In tapping-mode AFM, the steady-state characteristics of microcantilever are extremely important to determine the AFM performance. Due to the external excitation signal and the tip-sample interactions, the solving process of microcantilever motion equation will become very complicated with the traditional time-domain analysis method. In this paper, we propose the novel frequency-domain analysis method to analyze and improve the steady-state characteristics of microcantilever. Compared with the previous methods, this new method has three prominent advantages. Firstly, the analytical expressions of amplitude and phase of cantilever system can be derived conveniently. Secondly, the stability of the cantilever system can be accurately determined and the stability margin can be obtained quantitatively in terms of the phase margin and the magnitude margin. Thirdly, on this basis, external control mechanism can be devised quickly and easily to guarantee the high stability of the cantilever system. With this novel method, we derive the frequency response curves and discuss the great influence of the intrinsic parameters on the system stability, which provides theoretical guidance for selecting samples to achieve better AFM images in the experiments. Moreover, we introduce a new external series correction method to significantly increase the stability margin. The results indicate that the cantilever system is no longer easily disturbed by external interference signals.


1983 ◽  
Vol 105 (3) ◽  
pp. 487-494 ◽  
Author(s):  
M. D. Rabinowitz ◽  
E. J. Hahn

Assuming central preloading, operation below the second bending critical speed, and full film lubrication, this paper presents a theoretical model which allows one, with minimum computation, to design squeeze film damped rotors under conditions of high unbalance loading. Closed form expressions are derived for the maximum vibration amplitudes pertaining to optimally damped conditions. The resulting vibration amplitude and transmissibility data of design interest are presented for a wide range of practical operating conditions on a single chart. It can be seen that for a given rotor, the lighter the bearing the more easily one can satisfy design constraints relating to allowable rotor vibration levels and lubricant supply pressure requirements. The data presented are shown to be applicable to a wide variety of rotors, and a recommended procedure for optimal design is outlined.


2018 ◽  
Author(s):  
Olha Sakno ◽  
Dmytro Moisia ◽  
Tatiana Kolesnikova ◽  
Nikolay Mischenko ◽  
Viktor Poliakov ◽  
...  
Keyword(s):  

1967 ◽  
Vol 89 (4) ◽  
pp. 433-438 ◽  
Author(s):  
S. B. Malanoski

Shallow grooving in a herringbone pattern has been proposed to enhance the stability of both gas and liquid-lubricated journal bearings. It has been shown theoretically that this possibility is particularly advantageous for unloaded journal bearings. This paper describes corroborating experiments. The experiments included the running of an unloaded bearing up to speeds of 60,000 rpm and the collection of steady-state load-displacement, attitude angle data at intermediate speeds up to and including 60,000 rpm. No sign of bearing whirl instability was detected. There was good correlation between theoretical and experimental data. Design data for the partially grooved journal bearing is included for future designs.


Author(s):  
J. F. Walton ◽  
H. Heshmat

In this paper results of rotordynamic response and transient tests of a novel, high load squeeze film damper design, are presented. The spiral foil multi-squeeze film damper has been previously shown to provide two to four fold or larger increases in damping levels without resorting to significantly decreased damper clearances or increased lengths. By operating with a total clearance of approximately twice conventional designs, the non-linearities associated with high eccentricity operation are avoided. Rotordynamic tests with a dual squeeze film configuration were completed. As a part of the overall testing program, a flexible rotor system was subjected to high steady state imbalance levels and transient simulated bladeloss events for up to 0.254 mm (0.01 in) mass c.g offset or 180 gm-cm (2.5 oz-in) imbalance. The spiral foil multi-squeeze film damper demonstrated that the steady state imbalance and simulated bladeloss transient response of a flexible rotor operating above its first bending critical speed could be readily controlled. Rotor system imbalance sensitivity and logarithmic decrement are presented showing the characteristics of the system with the damper installed. The ability to accommodate high steady state and transient imbalance conditions make this damper well suited to a wide range of rotating machinery, including aircraft gas turbine engines.


1978 ◽  
Vol 100 (3) ◽  
pp. 558-562 ◽  
Author(s):  
D. H. Hibner ◽  
P. N. Bansal ◽  
D. F. Buono

The results of an analytical and experimental investigation showing the existence of an intershaft viscous damper instability were presented in reference [1]. In the present investigation, a more comprehensive stability analysis is used to study the stability of the test rig which incorporates a modified intershaft bearing support. The analysis is applicable to large multi-mass, rotor-bearing systems and includes the effects of gyroscopic moments, shear deformation, bearing support flexibility, and damping. The results of the stability analysis are presented in the form of system stability maps which clearly indicate the effectiveness of the modification in improving the instability onset speed of the system. Also presented are the results of an experimental investigation which substantiate the analytical predictions.


Sign in / Sign up

Export Citation Format

Share Document