Vortex Sheet Analysis of the Giromill

1978 ◽  
Vol 100 (3) ◽  
pp. 340-342 ◽  
Author(s):  
R. E. Wilson

A two-dimensional analysis of the performance and flowfield of the Giromill is presented. The Giromill is a vertical-axis wind turbine with straight blades that are articulated to produce maximum energy extraction from the wind. It is found that the power coefficient and windwise force coefficient for the Giromill have the same limit as obtained for the horizontal-axis wind turbine. A cross-wind force is also obtained with this type of wind turbine. The cross-wind force is of second order and decreases with tip speed. Streamlines and velocity profiles are illustrated for several loading conditions.

2018 ◽  
Vol 42 (2) ◽  
pp. 128-135 ◽  
Author(s):  
S Horb ◽  
R Fuchs ◽  
A Immas ◽  
F Silvert ◽  
P Deglaire

NENUPHAR aims at developing the next generation of large-scale floating offshore vertical-axis wind turbine. To challenge the horizontal-axis wind turbine, the variable blade pitch control appears to be a promising solution. This article focuses on blade pitch law optimization and resulting power and thrust gain depending on the operational conditions. The aerodynamics resulting from the implementation of a variable blade pitch control are studied through numerical simulations, either with a three-dimensional vortex code or with two-dimensional Navier-stokes simulations (two-dimensional computational fluid dynamics). Results showed that the three-dimensional vortex code used as quasi-two-dimensional succeeded to give aerodynamic loads in very good agreement with two-dimensional computational fluid dynamics simulation results. The three-dimensional-vortex code was then used in three-dimensional configuration, highlighting that the variable pitch can enhance the vertical-axis wind turbine power coefficient ( Cp) by more than 15% in maximum power point tracking mode and decrease it by more than 75% in power limitation mode while keeping the thrust below its rated value.


2014 ◽  
Vol 4 (2) ◽  
Author(s):  
I Kade Wiratama ◽  
Made Mara ◽  
L. Edsona Furqan Prina

The willingness of electrical energy is one energy system has a very important role in the economic development of a country's survival. As one energy source (wind) can be converted into electrical energy with the use of a horizontal axis wind turbine. Wind Energy Conversion Systems (WECS) that we know are two wind turbines in general, ie the horizontal axis wind turbine and vertical axis wind turbine is one type of renewable energy use wind as an energy generator. The purpose of this study was to determine the effect of the number of blade and the radius chord of rotation (n), Torque (T), Turbine Power (P), Power Coefficient (CP) and Tip Speed Ratio (λ) generated by the horizontal axis wind turbine with form linear taper. The results show that by at the maximum radius of the chord R3 the number blade 4 is at rotation = 302.700 rpm, Pturbine = 7.765 watt, Torque = 0.245 Nm, λ = 3.168 and Cp = 0.403 or 40.3%.


2013 ◽  
Vol 448-453 ◽  
pp. 1892-1896
Author(s):  
Rui Yang ◽  
Jin Long Li ◽  
Wei Wei Xia ◽  
Ting Ting Wang

Specifically address the design of a 5KW H-type vertical-axis wind turbine (H-VAWT) with NACA 0018 airfoil considering the factors that affect wind turbine power. The double-multiple streamtube (DMS) theoretical model is analyzed and summarized and calculated by Matlab. The 5KW H-type vertical axis wind turbines aerodynamic performance is calculated by the model written in Matlab. The curve of the power coefficient as a function of the tip-speed ratio and the curve of the normal force coefficient and the tangential farce as a function of the blade position is given by Matlab. From the curves we can see that upwind rotor aerodynamic load is larger, downwind rotor aerodynamic load is smaller and there is a serious flow retarding effect in the rotor downwind area.


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


Author(s):  
Sadek Ameziane ◽  
Abdesselem Chikhi ◽  
Mohammed Salah Aggouner

Background: The presented article is a contribution to the realization of a wind emulator based on a continuous-current machine. The development of this topic focuses on the modeling of a vertical axis wind turbine, a DC motor with independent excitation and its control via a chopper. Methods: To carry out this work, we have studied and designed the electronic and mechanical sensors as well as a command implemented on the dSPACE DS1103 system. Results: The main purpose of this work is related, on one hand, to the control of the motor turbine by imposing the wind profile and on the other hand generate the command of the implanted MPPT. The experimental results obtained showed the great performances which characterize this improved wind energy system. Conclusion: Finally, a wind turbine with variable speed is a system having a complex model; however, a detailed model of the interaction between the wind and the aero-turbine is useful to understand certain phenomena such as rotational sampling or the spatial filter.


2021 ◽  
pp. 0309524X2110039
Author(s):  
Amgad Dessoky ◽  
Thorsten Lutz ◽  
Ewald Krämer

The present paper investigates the aerodynamic and aeroacoustic characteristics of the H-rotor Darrieus vertical axis wind turbine (VAWT) combined with very promising energy conversion and steering technology; a fixed guide-vanes. The main scope of the current work is to enhance the aerodynamic performance and assess the noise production accomplished with such enhancement. The studies are carried out in two phases; the first phase is a parametric 2D CFD simulation employing the unsteady Reynolds-averaged Navier-Stokes (URANS) approach to optimize the design parameters of the guide-vanes. The second phase is a 3D CFD simulation of the full turbine using a higher-order numerical scheme and a hybrid RANS/LES (DDES) method. The guide-vanes show a superior power augmentation, about 42% increase in the power coefficient at λ = 2.75, with a slightly noisy operation and completely change the signal directivity. A remarkable difference in power coefficient is observed between 2D and 3D models at the high-speed ratios stems from the 3D effect. As a result, a 3D simulation of the capped Darrieus turbine is carried out, and then a noise assessment of such configuration is assessed. The results show a 20% increase in power coefficient by using the cap, without significant change in the noise signal.


2012 ◽  
Vol 499 ◽  
pp. 259-264
Author(s):  
Qi Yao ◽  
Ying Xue Yao ◽  
Liang Zhou ◽  
S.Y. Zheng

This paper presents a simulation study of an H-type vertical axis wind turbine. Two dimensional CFD model using sliding mesh technique was generated to help understand aerodynamics performance of this wind turbine. The effect of the pith angle on H-type vertical axis wind turbine was studied based on the computational model. As a result, this wind turbine could get the maximum power coefficient when pitch angle adjusted to a suited angle, furthermore, the effects of pitch angle and azimuth angle on single blade were investigated. The results will provide theoretical supports on study of variable pitch of wind turbine.


Sign in / Sign up

Export Citation Format

Share Document