Film Cooling With Large Density Differences Between the Mainstream and the Secondary Fluid Measured by the Heat-Mass Transfer Analogy

1977 ◽  
Vol 99 (4) ◽  
pp. 620-627 ◽  
Author(s):  
D. R. Pedersen ◽  
E. R. G. Eckert ◽  
R. J. Goldstein

The effect of large density differences on film cooling effectiveness was investigated through the heat-mass transfer analogy. Experiments were performed in a wind tunnel where one of the plane walls was provided with a porous strip or a row of holes with three-diameter lateral spacing and inclined 35 deg into the main stream. Helium, CO2, or refrigerant F-12, was mixed with air either in small concentrations to approach a constant property situation or in larger concentration to produce a large density difference and injected through the porous strip or the row of holes into the mainstream. The resulting local gas concentrations were measured along the wall. The density ratio of secondary to mainstream fluid was varied between 0.75 and 4.17 for both injection systems. Local film effectiveness values were obtained at a number of positions downstream of injection and at different lateral positions. From these lateral average values could also be calculated. The following results were obtained. The heat mass-transfer analogy was verified for injection through the porous strip or through holes at conditions approaching a constant property situation. Neither the Schmidt number, nor the density ratio affects the film effectiveness for injection through a porous strip. The density ratio has a strong effect on the film effectiveness for injection through holes. The film effectiveness for injection through holes has a maximum value for a velocity ratio (injection to free stream) between 0.4 and 0.6. The center-line effectiveness increases somewhat with a decreasing ratio of boundary layer thickness to injection tube diameter.

1995 ◽  
Vol 117 (3) ◽  
pp. 451-460 ◽  
Author(s):  
H. H. Cho ◽  
R. J. Goldstein

The heat (mass) transfer coefficient and the film cooling effectiveness are obtained from separate tests using pure air and naphthalene-saturated vapor injected through circular holes into a crossflow of air. The experiments indicate that Sherwood numbers around the injection hole are up to four times those on a flat plate (without injection holes) due to the interaction of the jets and the mainstream. The mass transfer around the injection holes is dominated by formations of horseshoe, side, and kidney vortices, which are generated by the jet and crossflow interaction. For an in-line array of holes, the effectiveness is high and uniform in the streamwise direction but has a large variation in the lateral direction. The key parameters, including transfer coefficients on the back surface (Part I), inside the hole (Part I), and on the exposed surfaces, and the effectiveness on the exposed surface, are obtained so that the wall temperature distribution near the injection holes can be determined for a given heat flux condition. This detailed information will also aid the numerical modeling of flow and mass/heat transfer around film cooling holes.


2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Luke J. McNamara ◽  
Jacob P. Fischer ◽  
James L. Rutledge ◽  
Marc D. Polanka

Abstract To be representative of engine conditions, a measurement of film cooling behavior with an experiment must involve matching certain nondimensional parameters, such as freestream Reynolds number. However, the coolant flowrate must also be scaled between the experiments and engine conditions to accurately predict film cooling effectiveness. This process is complicated by gas property variation with temperature. Additionally, selection of the appropriate coolant flowrate parameter to scale from low to high temperatures is a topic of continued uncertainty. Furthermore, experiments are commonly conducted using thermal measurement techniques with infrared thermography (IR), but the use of pressure-sensitive paints (PSPs) implementing the heat-mass transfer analogy is also common. Thus, the question arises of how the adiabatic effectiveness distributions compare between mass transfer experimental methods and thermal experimental methods and whether these two methods are sensitive to coolant flowrate parameters in different ways. In this study, a thermal technique with IR was compared with a heat-mass transfer method with a PSP on a flat plate model with a 7-7-7 film cooling hole. While adiabatic effectiveness is best scaled by accounting for specific heats with the advective capacity ratio (ACR) using thermal techniques, results revealed that PSP measurements are scaled best with the mass flux ratio (M). The difference in these methods has significant implications for engine designers that rely on PSP experimental data to predict engine thermal behavior as PSP is fundamentally not sensitive to the same relevant physical mechanisms to which thermal methods are sensitive.


2018 ◽  
Vol 0 (0) ◽  
Author(s):  
Mukesh Prakash Mishra ◽  
A K Sahani ◽  
Sunil Chandel ◽  
R K Mishra

Abstract Characteristics of full coverage film cooling of an adiabatic flat plate are studied for opposite injection of coolant at different angles. Two in-line adjacent rows of cooling holes injecting in opposite directions are considered in this study. The cooling performance is compared with the configurations having forward and reverse injecting holes at similar injection angles. The holes are arranged in an array of 20 rows with equal spacing both span-wise and stream-wise. Computational analyses are carried out over a wide range of velocity ratios (VR) of practical importance ranging from 0.5 to 2.0 at density ratio of about 1.0. Injection angle and velocity ratio are found to have strong influence on film cooling effectiveness of opposite injection. At low velocity ratio of VR=0.5, film cooling performance of opposite injection at 45° is found better than at other angles, i. e. 30° and 60°. At higher velocity ratios, injection at 30° is found superior. Film cooling effectiveness becomes insensitive to velocity ratios at higher range for 45° and 60° injections. Evolution of effusion film layer and interaction between coolant and primary flow is also studied in this paper.


1999 ◽  
Vol 121 (2) ◽  
pp. 225-232 ◽  
Author(s):  
R. J. Goldstein ◽  
P. Jin ◽  
R. L. Olson

A special naphthalene sublimation technique is used to study the film cooling performance downstream of one row of holes of 35 deg inclination angle with 3d hole spacing and relatively small hole length to diameter ratio (L/d = 6.3). Both film cooling effectiveness and mass/heat transfer coefficient are determined for blowing rates from 0.5 to 2.0 with density ratio of 1.0. The mass transfer coefficient is measured using pure air film injection, while the film cooling effectiveness is derived from comparison of mass transfer coefficients obtained following injection of naphthalene-vapor-saturated air with those from pure air injection. This technique enables one to obtain detailed local information on film cooling performance. The laterally averaged and local film cooling effectiveness agree with previous experiments. The difference between mass/heat transfer coefficients and previous heat transfer results indicates that conduction error may play an important role in the earlier heat transfer measurements.


1985 ◽  
Vol 107 (2) ◽  
pp. 313-320 ◽  
Author(s):  
P. M. Ligrani ◽  
C. Camci

A variable property correction is given for turbulent boundary layers that are film-cooled using staggered rows of injection holes inclined at 35 deg. With the correction, a relation is provided between the adiabatic film cooling effectiveness for constant property flow and heat transfer coefficients for variable property flow, which are based on the difference between the freestream recovery temperature and wall temperature. The variable property correction was determined from heat transfer measurements for a range of injection parameters at different values of the nondimensional coolant temperature and from results in the literature. Because the flow is compressible, the importance of the injection mass flux ratio, momentum flux ratio, and velocity ratio are considered in the determination of effectiveness.


Author(s):  
Yulia V. Peet ◽  
Sanjiva K. Lele

We report results from a computational study of film cooling from cylindrical holes inclined at 35 degrees with respect to a flat surface using Large Eddy Simulations (LES). The hole length is L/d = 3.5, distance between the holes is P/d = 3, boundary layer above the flat surface is turbulent with Reθ = 938, density ratio = 0.95, velocity ratio = 0.5. All pertinent components of geometry, namely, supply plenum, film hole and crossflow region above the test surface, are simulated. The simulations are performed using a multicode approach, where a low Mach number code is employed inside the plenum and in the film hole, and a compressible code is used for the flow above the test surface. Flow inside the plenum, film hole and above the test surface is analyzed. Mean velocity and turbulence characteristics in the near field of the jet injection obtained in the simulations are compared to experimental data of Pietrzyk et al. [1]. Adiabatic film cooling effectiveness is estimated and compared with experiments of Sinha et al. [2]. Relation of the coherent vortical structures observed in the flow to film cooling performance is discussed. Advantage of LES over RANS methods for this type of flow is confirmed by showing that spanwise u′w′ shear stress and lateral growth of the jet are predicted correctly in the current LES as opposed to typical RANS computations.


Author(s):  
H. H. Cho ◽  
D. H. Rhee ◽  
B. G. Kim

The present study investigates local film cooling effectiveness values and heat/mass transfer coefficients around a conical-shaped film cooling hole with compound angle orientations. Three types of film cooling hole geometry are compared in this study; one is cylindrical hole geometry with constant cross section and the others are shaped hole geometries with conically-enlarged hole exits. The shaped holes have cylindrical passage sections at the hole inlet region to obtain a certain pressure drop through the holes. One shaped hole expands 4° in all directions from the middle of hole to the exit. The other shaped hole has the tilted center-line by 4° between the conical and metering holes and is enlarged by 8° to downstream side. The hole area ratios of the exit to the inlet are 2.55 and 2.48, respectively. The compound-angled film cooling jet is ejected through the single holes, which are inclined at 30° to the surface based on the metering hole and are rotatable in lateral direction from 0° to 90°. The blowing rates are changed from 0.5 to 2.0. The naphthalene sublimation technique is used to determine local heat/mass transfer coefficients and local adiabatic/impermeable wall film cooling effectiveness around the injection hole. The results indicate that the injected jet protects the surface effectively with low blowing rates and spreads more widely with the compound angle injections than the axial injection. For the shaped hole enlarged by 4° in all directions, the penetration of jet is reduced and higher cooling performance is obtained even at relatively high blowing rates because the increased hole exit area reduces hole exit velocity. Furthermore, the film cooling effectiveness is fairly uniform near the hole due to the wide lateral spreading of coolant with the expanded cooling hole exit.


1991 ◽  
Vol 113 (3) ◽  
pp. 442-449 ◽  
Author(s):  
A. K. Sinha ◽  
D. G. Bogard ◽  
M. E. Crawford

Film-cooling effectiveness was studied using a row of inclined holes that injected cryogenically cooled air across a flat, adiabatic test plate. The density ratio of the coolant to mainstream varied from 1.2 to 2.0. Surface temperatures were measured using a unique surface thermocouple arrangement free of conduction errors. Temperatures were obtained along the jet centerline and across a number of lateral locations. By independently varying density ratio and blowing rate, scaling of adiabatic effectiveness with mass flux ratio, velocity ratio, and momentum ratio was determined. Depending on the momentum flux ratio, the jet either remains attached to the surface, detaches and then reattaches, or is fully detached. For attached jets, the centerline effectiveness scaled with the mass flux ratio. However, for detached-reattached jets, a consistent scaling was not found although the general distribution of the centerline effectiveness scaled with momentum flux ratio. Laterally averaged effectiveness was found to be dependent on density ratio and momentum flux ratio. Decreases in density ratio and increases in momentum flux ratio were found to reduce the spreading of the film cooling jet significantly and thereby reduce laterally averaged effectiveness.


Sign in / Sign up

Export Citation Format

Share Document