Maximum Isentropic Flow of Dry Saturated Steam Through Pressure Relief Valves

1979 ◽  
Vol 101 (2) ◽  
pp. 113-117 ◽  
Author(s):  
L. Thompson ◽  
O. E. Buxton

The maximum isentropic flow of dry saturated steam using iterative computer techniques with standard (ASME) steam property data is determined. Comparison of this maximum flow with the Napier flow (the calibrating ideal flow for ASME pressure relief valve capacity ratings) reveals significant divergence between the two. A correction factor is developed to be applied to existing ASME safety and safety relief valve capacity ratings to rectify the difference. Experimental flow measurement work verifying the divergence between the maximum isentropic flow and the Napier flow is described.

1999 ◽  
Vol 122 (1) ◽  
pp. 60-65 ◽  
Author(s):  
A. J. Pierorazio ◽  
A. M. Birk

This paper presents the results of the first full test series of commercial pressure relief valves using the newly constructed Queen’s University/Transport Canada dynamic valve test facility (VTF) in Maitland, Ontario. This facility is unique among those reported in the literature in its ability to cycle the valves repeatedly and to measure the time-varying flow rates during operation. This dynamic testing provides much more insight into valve behavior than the single-pop or continuous flow tests commonly reported. The facility is additionally unique in its simulation of accident conditions as a means of measuring valve performance. Specimen valves for this series represent 20 each of three manufacturers’ design for a semi-internal 1-in. 312 psi LPG relief valve. The purpose of this paper is to present the procedure and results of these tests. No effort is made to perform in-depth analysis into the causes of the various behaviors, nor is any assessment made of the risk presented by any of the valves. [S0094-9930(00)01201-4]


Author(s):  
Neal Evans

The prediction of acoustically induced vibration (AIV) failures in the design or redesign of piping systems requires an accurate estimate of the excitation source. Furthermore, the next generation of AIV analysis may require a physics-based noise-generation predictive technique, which entails the need for validation via direct measurements. The noise generated by a pressure relief valve (PRV) during a full-scale AIV blowdown test was measured inside a pipe downstream of the valve. A maximum flow rate of 33.5 kg/s was achieved using nitrogen gas through a 3×4″ relief valve generating a peak dynamic pressure level exceeding 650 kPa and sustained levels of 450 kPa (peak). Measurements are compared to existing noise calculation techniques which appear to under-predict the generated noise.


Author(s):  
Jianxin Zhu ◽  
Xuedong Chen ◽  
YunRong Lu ◽  
Zhibin Ai ◽  
Weihe Guan

The shutdown of charge gas compressor in large-scale ethylene-cracking plant always involves emergency pressure relief of charge gas through multiple safety valves. The emergency relief capacity plays an important role on the safety of the overall plant. In this paper, by studying the difference between the configuration of the pressure relief system of two 1000 KTA ethylene-cracking plants (the inner diameters of the charge gas pipeline in both plants are 2m, while the number of same-sized relief valves are 28 and 19, respectively), the relief capacity of multiple relief valves is studied and compared with empirical calculation and numerical analysis. It is found that, due to the interruption of fluid flow when compressor is emergency shutdown, the upstream pressure of each relief valve increase steadily with the continuously make-up of the charge gas, but the difference between the inlet pressure of all relief valves can be neglected. With the increase of the upstream pressure, the opening of relief valves is determined mainly by the set pressure. In multiple valves pressure relief scenario, normally the downstream valves have greater relief capacity than those upstream valves if both relief valves have the same back pressure. Also, by analysis it is noted that the pressure relief capacities of multiple relief valves in both plants are sufficient. The minimum number of relief valves required for process safety is obtained. The maximum achievable Safety Integrity Level (SIL) of pressure relief system is determined by calculation of the reliability of the redundant relief valves. The analysis is used for determination of the SIL of the pressure relief system. The finding is also significant for determination of the required capacity of multiple relief valves.


Author(s):  
Jean-Franc¸ois Rit ◽  
Pierre Moussou ◽  
Christophe Teygeman

Pressure relief valves in water pipes are known to sometimes chatter when the inlet pressure slightly exceeds the maximum allowable working pressure (MAWP) value. Though these devices are responsible for numerous fatigue issues in process industries, there is a relatively low number of technical publications describing well-established facts about them, especially for heavy fluids. The present study deals with the investigation of the stability of a pressure relief valve when a pressure drop device is arranged upstream. The valve is a simple spring device, with a 1″1/2 inlet diameter and a set pressure equal to 3 MPa. The 12% to 66% range of relative opening for this valve exhibit an unstable static equilibrium of the plug, designed to achieve the so called “pop action”; as soon as the pressure set point is reached, a runaway process leads to the full opening. The statically stable regimes were observed in former studies with respect to the upstream pressure and to the plug position, with a test rig arrangement which ensured an almost constant pressure upstream. In the present study, high pressure drop devices are arranged upstream, in order to stabilize the hydraulic regimes. It is found that the upstream pressure drop devices significantly enlarge the range of steady state plug positions and upstream pressures. Pressure and plug position measurements are shown with a time resolution lower than 2 ms. Comparison with hydraulic regimes of the former studies indicate that the presence of an upstream pressure drop modifies the plug balance. It is proposed that the arrangement of pressure drop device upstream may significantly reduce the risk of valve instability in water pipes.


Author(s):  
Holly L. Watson ◽  
Robert E. Gross ◽  
Stephen P. Harris

The United States Department of Energy’s Savannah River Site (SRS) in Aiken, South Carolina, is dedicated to promoting site-level risk-based inspection (RBI) practices in order to maintain a safe and productive work environment. Inspecting component parts of operational systems, such as pressure relief valves (PRVs), is a vital part of SRS’s safe operating envelope. This paper is a continuation of a SRS program to minimize the risks associated with PRV failures. Spring operated pressure relief valve (SOPRV) test data accumulated over the past ten years resulted in over 11,000 proof tests of both new and used valves. Improved performance is seen for air service valves resulting from changes to the maintenance program. Although, statistically significant improvement was not seen for liquid, gas, or steam service valves, analysis shows that the overall probability of failure on demand is trending down. Current SRS practices are reviewed and the reasons for improved performance are explored.


2015 ◽  
Vol 752-753 ◽  
pp. 828-832
Author(s):  
Nian Yong Zhou ◽  
Yan Long Jiang ◽  
Lei Xu ◽  
Jun Li ◽  
He Xu Wang

By analyzing the key technologies of pressure relief valve and comparing the advantages and disadvantages of existing products, liquid sealing automatic micro-pressure relief valve is designed with the properties of adjustable opening pressure, fast response rate, good sealing performance and long life, etc. Also, a reasonable mathematical model of liquid sealing automatic micro-pressure relief valve is developed, and the pressure relief valve’s opening pressure, reset pressure, relief rate and other key performance parameters is obtained. This work wil be helpful for the design and research of automatic micro-pressure relief valves used in mine rescue cabin.


Author(s):  
Tero Eskola ◽  
Heikki Handroos ◽  
Takao Nishiumi

The present paper deals with hardware-in-the-loop (HIL) simulation of hydraulic components and systems. The main idea is to develop hydraulics by using a simulation model of it as a part of the machine. The interface between the real and simulated parts is defined by means of pressures and flows. The proposed idea makes it possible to test a variety of design parameters of a hydraulic system or single component on-line while running the practical experimental machine. The method is demonstrated in its application to a single-stage pressure relief valve in a simple hydraulic circuit. The real valve is replaced in the circuit by a HIL simulator mimicking the dynamic behavior of the valve. Finally the dynamic responses of original pressure relief valve and the HIL simulator are compared.


Author(s):  
J Francis ◽  
P L Betts

Lift, blowdown and discharge of pressure relief valves depend ultimately on the flow structures generated within those valves. A report is made of an enquiry into the incompressible flow structure within such a valve. Commercial software is used to predict axisymmetric flow patterns inside a model of a real valve, and comparisons are made with the pressure distribution and force imposed on the real valve disc. The reliability of the simulation is further assessed using the oil-film technique to record reattachment lengths of separated shear layers. Results of the simulation are encouraging and have enabled flow regimes visible in the valve flow characteristic to be identified with the transition between separated flow patterns inside the valve.


Author(s):  
Robert E. Gross ◽  
Stephen P. Harris

Risk-based inspection methods enable estimation of the probability of failure on demand for spring-operated pressure relief valves at the United States Department of Energy’s Savannah River Site in Aiken, South Carolina. This paper presents a statistical performance evaluation of soft seat spring operated pressure relief valves. These pressure relief valves are typically smaller and of lower cost than hard seat (metal to metal) pressure relief valves and can provide substantial cost savings in fluid service applications (air, gas, liquid, and steam) providing that probability of failure on demand (the probability that the pressure relief valve fails to perform its intended safety function during a potentially dangerous over pressurization) is at least as good as that for hard seat valves. The research in this paper shows that the proportion of soft seat spring operated pressure relief valves failing is the same or less than that of hard seat valves, and that for failed valves, soft seat valves typically have failure ratios of proof test pressure to set pressure less than that of hard seat valves.


2010 ◽  
Vol 132 (4) ◽  
Author(s):  
P. Moussou ◽  
R. J. Gibert ◽  
G. Brasseur ◽  
Ch. Teygeman ◽  
J. Ferrari ◽  
...  

Pressure relief valves in water pipes are known to sometimes chatter when the inlet pressure slightly exceeds the set pressure. While these devices are responsible for numerous fatigue issues in process industries, there is a relatively low number of technical publications covering their performance, especially in heavy fluid applications. The present study is intended as a contribution to the understanding of pressure relief valve dynamics, taking into account fluid-structure interactions. A series of tests were performed with a water relief valve in a test rig. Adjusting the set pressure of the valve to about 30 bars, an upstream pressure varying from 20 bars to 35 bars was imposed, so that the valve opened and the water flow varied from a few m3/h to about 80 m3/h. During the tests, the pipe was equipped upstream and downstream of the valve with static pressure sensors and a flowmeter, the disk lift was measured with a laser displacement sensor, and the spring force was recorded simultaneously. Several fluctuating pressure sensors were also installed in the inlet pipe. Static instability is investigated by comparing the spring force to the hydraulic force. Dynamic instability is observed and it is shown that the resonant behavior of the disk generates an apparent negative pressure drop coefficient at some frequencies. This negative pressure drop coefficient can trigger a dynamic instability in a manner similar to the negative damping effect in leakage-flow vibrations.


Sign in / Sign up

Export Citation Format

Share Document