On the Disintegration of Bodies of (Granular) Materials Governed by the Coulomb Rule

1964 ◽  
Vol 31 (1) ◽  
pp. 1-4 ◽  
Author(s):  
H. H. Bleich

For the purposes of analysis, granular materials are frequently idealized by stating that slip will occur when the stresses satisfy a relation depending on the angle of internal friction and cohesion. States of stress violating this rule are not permitted. From a simple mechanical model it is concluded that in dynamic problems the possibility of disintegration of the body must be considered, and that disintegration, if it occurs, is a boundary-layer phenomenon.

2004 ◽  
Vol 45 (3) ◽  
pp. 373-392
Author(s):  
G. M. Cox ◽  
J. M. Hill

AbstractTo model cohesionless granular flow using continuum theory, the usual approach is to assume the cohesionless Coulomb-Mohr yield condition. However, this yield condition assumes that the angle of internal friction is constant, when according to experimental evidence for most powders the angle of internal friction is not constant along the yield locus, but decreases for decreasing normal stress component σ from a maximum value of π/2. For this reason, we consider here the more general yield function which applies for shear-index granular materials, where the angle of internal friction varies with σ. In this case, failure due to frictional slip between particles occurs when the shear and normal components of stress τ and σ satisfy the so-called Warren Spring equation (|τ|/c)n = 1 − (σ/t), where c, t and n are positive constants which are referred to as the cohesion, tensile strength and shear-index respectively, and experimental evidence indicates for many materials that the value of the shear-index n lies between 1 and 2. For many materials, the cohesion is close to zero and therefore the notion of a cohesionless shear-index granular material arises. For such materials, a continuum theory applying for shear-index cohesionless granular materials is physically plausible as a limiting ideal theory, and any analytical solutions might provide important benchmarks for numerical schemes. Here, we examine the cohesionless shearindex theory for the problem of gravity flow of granular materials through two-dimensional wedge-shaped hoppers, and we attempt to determine analytical solutions. Although some analytical solutions are found, these do not correspond to the actual hopper problem, but may serve as benchmarks for purely numerical schemes. The special analytical solutions obtained are illustrated graphically, assuming only a symmetrical stress distribution.


2018 ◽  
Vol 4 (9) ◽  
pp. 2197 ◽  
Author(s):  
Atanaz Bahrami Balfeh Teimouri ◽  
Ahad Bagherzadeh Khalkhali

Static and quasi-static stability analysis of embankment dams is of vital importance in different stages of dam’s design, construction and operation. The stability can be studied using different techniques which are generally analyzed through Limit Equilibrium Method. Base on this main method, the critical slip surface is selected and the shear strength required to counter the slip at the selected surface is obtained and compared with shear strength of the soil at that surface in order to obtain confidence coefficient. In the present research, the Geo-studio Slope/w software that is a geotechnical software based on finite element method and is widely used in geotechnical field, is employed in order to analyze the stability of the body and foundation of Narmab dam in Golestan province. Narmab dam is a homogeneous embankment dam with a height of 60 m, crest length of 807 m and reservoir volume of 115 million cubic meters. The confidence coefficients provided by the software are compared to the permissible confidence coefficients. Moreover, the sensitivity of the confidence coefficients values to the changes in the effective factors, adhesion and internal friction coefficient, is analyzed. The analyses were performed on 8 values (±5, ±10, ±15, ±20) of c and φ and the obtained values of confidence coefficients were compared. In addition, a comparison was made between different methods of stability analysis. According to the static and quasi-static conditions, Narmab dam is stable in all loading stages (End of Construction, First Impounding and Steady State Seepage and In general, only for the static conditions of the end of construction stage, the sensitivity of adhesion is greater than the angle of internal friction, but, in other conditions and stages, the sensitivity of friction angle has more effects.


2018 ◽  
Vol 183 ◽  
pp. 01054
Author(s):  
Elisha Rejovitzky

The design of protective structures often requires numerical modeling of shock-wave propagation in the surrounding soils. Properties of the soil such as grain-grading and water-fraction may vary spatially around a structure and among different sites. To better understand how these properties affect wave propagation we study how the meso-structure of soils affects their equation of state (EOS). In this work we present a meso-mechanical model for granular materials based on a simple representation of the grains as solid spheres. Grain-grading is prescribed, and a packing algorithm is used to obtain periodic grain morphologies of tightly packed randomly distributed spheres. The model is calibrated by using experimental data of sand compaction and sound-speed measurements from the literature. We study the effects of graingrading and show that the pressures at low strains exhibit high sensitivity to the level of connectivity between grains. At high strains, the EOS of the bulk material of the grains dominates the behavior of the EOS of the granular material.


2014 ◽  
Vol 554 ◽  
pp. 717-723
Author(s):  
Reza Abbasabadi Hassanzadeh ◽  
Shahab Shariatmadari ◽  
Ali Chegeni ◽  
Seyed Alireza Ghazanfari ◽  
Mahdi Nakisa

The present study aims to investigate the optimized profile of the body through minimizing the Drag coefficient in certain Reynolds regime. For this purpose, effective aerodynamic computations are required to find the Drag coefficient. Then, the computations should be coupled thorough an optimization process to obtain the optimized profile. The aerodynamic computations include calculating the surrounding potential flow field of an object, calculating the laminar and turbulent boundary layer close to the object, and calculating the Drag coefficient of the object’s body surface. To optimize the profile, indirect methods are used to calculate the potential flow since the object profile is initially amorphous. In addition to the indirect methods, the present study has also used axial singularity method which is more precise and efficient compared to other methods. In this method, the body profile is not optimized directly. Instead, a sink-and-source singularity distribution is used on the axis to model the body profile and calculate the relevant viscose flow field.


2013 ◽  
Vol 729 ◽  
pp. 702-731 ◽  
Author(s):  
A. I. Ruban ◽  
M. A. Kravtsova

AbstractIn this paper we study the three-dimensional perturbations produced in a hypersonic boundary layer by a small wall roughness. The flow analysis is performed under the assumption that the Reynolds number, $R{e}_{0} = {\rho }_{\infty } {V}_{\infty } L/ {\mu }_{0} $, and Mach number, ${M}_{\infty } = {V}_{\infty } / {a}_{\infty } $, are large, but the hypersonic interaction parameter, $\chi = { M}_{\infty }^{2} R{ e}_{0}^{- 1/ 2} $, is small. Here ${V}_{\infty } $, ${\rho }_{\infty } $ and ${a}_{\infty } $ are the flow velocity, gas density and speed of sound in the free stream, ${\mu }_{0} $ is the dynamic viscosity coefficient at the ‘stagnation temperature’, and $L$ is the characteristic distance the boundary layer develops along the body surface before encountering a roughness. We choose the longitudinal and spanwise dimensions of the roughness to be $O({\chi }^{3/ 4} )$ quantities. In this case the flow field around the roughness may be described in the framework of the hypersonic viscous–inviscid interaction theory, also known as the triple-deck model. Our main interest in this paper is the nonlinear behaviour of the perturbations. We study these by means of numerical solution of the triple-deck equations, for which purpose a modification of the ‘skewed shear’ technique suggested by Smith (United Technologies Research Center Tech. Rep. 83-46, 1983) has been used. The technique requires global iterations to adjust the viscous and inviscid parts of the flow. Convergence of such iterations is known to be a major problem in viscous–inviscid calculations. In order to achieve improved stability of the method, both the momentum equation for the viscous part of the flow, and the equations describing the interaction with the flow outside the boundary layer, are treated implicitly in this study. The calculations confirm the fact that in this sort of flow the perturbations are capable of propagating upstream in the boundary layer, resulting in a perturbation field which surrounds the roughness on all sides. We found that the perturbations decay rather fast with the distance from the roughness everywhere except in the wake behind the roughness. We found that if the height of the roughness is small, then the perturbations also decay in the wake, though much more slowly than outside the wake. However, if the roughness height exceeds some critical value, then two symmetric counter-rotating vortices form in the wake. They appear to support themselves and grow as the distance from the roughness increases.


1986 ◽  
Vol 64 (6) ◽  
pp. 1295-1309 ◽  
Author(s):  
M. M. Chance ◽  
D. A. Craig

Detailed water flow around larvae of Simulium vittatum Zett. (sibling IS-7) was investigated using flow tanks, aluminium flakes, pigment, still photography, cinematography, and video recordings. Angle of deflection of a larva from the vertical has a hyperbolic relationship to water velocity. Velocity profiles around larvae show that the body is in the boundary layer. Frontal area of the body decreases as velocity increases. Disturbed larvae exhibit "avoidance reaction" and pull the body into the lower boundary layer. Longitudinal twisting and yawing of the larval body places one labral fan closer to the substrate, the other near the top of the boundary layer. Models and live larvae were used to demonstrate the basic hydrodynamic phenomenon of downstream paired vortices. Body shape and feeding stance result in one of the vortices remaining in the lower boundary layer. The other rises up the downstream side of the body, passes through the lower fan, then forms a von Karman trail of detaching vortices. This vortex entrains particulate matter from the substrate, which larvae then filter. Discharge of water into this upper vortex remains constant at various velocities and only water between the substrate and top of the posterior abdomen is incorporated into it. The upper fan filters water only from the top of the boundary layer. Formation of vortices probably influences larval microdistribution and filter feeding. Larvae positioned side by side across the flow mutually influence flow between them, thus enhancing feeding. Larvae downstream of one another may use information from the von Karman trail of vortices to position themselves advantageously.


2021 ◽  
Vol 3 (2) ◽  
pp. 74-80
Author(s):  
Talal Masoud

The results of the direct shear test on Jerash expansive soil show the effect of the initial water content on the cohesion (c) and on the angel of internal friction ( ) [shear strength parameters].it show that, as the initial water increase, the cohesion (c) of Jerash expansive soil also increase up to the shrinkage limit, after that increase of water even small amount, decrease the cohesion of the soil. On the other hand, the results of direct shear test show also  that as the water content increase, the angle of internal friction ( )remain unchanged up to shrinkage limit , any increase of water cause a large decrease on the angle of internal friction of Jerash expansive soil.


Sign in / Sign up

Export Citation Format

Share Document