A General Solution for the Elastoplastic Thermal Stresses in a Strain-Hardening Plate With Arbitrary Material Properties

1962 ◽  
Vol 29 (1) ◽  
pp. 151-158 ◽  
Author(s):  
A. Mendelson ◽  
S. W. Spero

A general method is presented for obtaining the elastoplastic stress and strain distributions in a thermally stressed plate of a strain-hardening material with temperature-varying modulus, yield point, and coefficient of thermal expansion. It is shown that for linear strain-hardening the solution can often be obtained in closed form. It is indicated that the error due to neglecting strain-hardening may sometimes be appreciable. The assumption that the total strain remains the same as that computed elastically (strain invariance) often leads to smaller errors than the neglect of strain-hardening.

Author(s):  
Fuat Okumus ◽  
Aydin Turgut ◽  
Erol Sancaktar

Abstract In this study, the use of coating layers is investigated to reduce thermal stresses in the metal matrix composites which have a mismatch in coefficients of thermal expansions in fiber and matrix components. The thermoelastic solutions are obtained based on a three-cylinder model. It is shown that the effectiveness of the layer can be defined by the product of its coefficient of thermal expansion and thickness. Consequently, a compensating layer with a sufficiently high coefficient of thermal expansion can reduce the thermal stresses in the metal matrix. The study is based on a concentric three cylinder model isolating individual steel fibers surrounded with a coating layer and an aluminum matrix layer. Only monotonic cooling is studied.


Actuators ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 9 ◽  
Author(s):  
Mark Cartolano ◽  
Boxi Xia ◽  
Aslan Miriyev ◽  
Hod Lipson

We examine electrically conductive fabrics as conductive heaters for heat-activated soft actuators. We have explored various fabric designs optimized for material properties, heat distribution and actuation/de-actuation characteristics of the soft actuators. We implemented this approach in the silicone/ethanol composite actuators, in which ethanol undergoes a thermally-induced phase change, leading to high actuation stress and strain. Various types of conductive fabrics were tested, and we developed a stretchable kirigami-based fabric design. We demonstrate a fabric heater that is capable of cyclic heating of the actuator to the required 80 °C. The fabric with the special kirigami design can withstand temperatures of up to 195 °C, can consume up to 30 W of power, and allows the actuator to reach >30% linear strain. This technology may be used in various systems involving thermally-induced actuation.


Recycling ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 12 ◽  
Author(s):  
Kunal Mishra ◽  
Sarat Das ◽  
Ranji Vaidyanathan

More than 250,000 metric tons (600 million pounds) of carpet are dumped in landfills every year. That creates a significant concern regarding environmental deterioration and economic liability. It is therefore imperative to develop sustainable post-consumer carpet-based products for high-value engineering applications such as composite tooling. To be considered as an acceptable composite tooling material, the composite needs to meet certain required properties such as a low coefficient of thermal expansion, excellent compressive properties, and high a hardness value after repeated exposure to curing cycles. The tooling composites must also exhibit the ability to endure several curing cycles, without deteriorating the mechanical properties. In the present investigation, post-consumer carpet has been recycled in the form of structural composites for tooling applications. The recycled carpet composites have been reinforced with 0.5 wt.% of graphene nanoplatelets to modify the material properties of the carpet composites. The results from compressive and hardness experiments demonstrate that the recycled carpet preserved its mechanical integrity even after several curing cycles. This indicates that recycled carpet composites have the potential to be a low-cost composite tooling alternative for the industry.


Author(s):  
Chia-Lung Chang ◽  
Po-Hsien Li

The electronic package is a multi-layered structure that is consisted of several materials. Under the temperature loadings, the interfacial stresses between layered components are generated due to the CTE (coefficient of thermal expansion) mismatch between different materials. In die bonding process, the void or defect might exist at the die attach/die paddle interface. The void cause further delamination on the interface during the encapsulation process. In this study, the finite element method is used to construct the model of electronic package with a void on the die attach/die paddle interface. The energy release rate based on J integration, which is calculated by the stress and strain around the tip of crack, is used as a damage parameter to predict the tendency of further delamination during encapsulation. Effect of material properties (Young’s modulus and CTE) and die attach thickness on delamination of die attach/die paddle interface in package during encapsulation is studied.


2012 ◽  
Vol 472-475 ◽  
pp. 332-335
Author(s):  
Chun Ping Guan ◽  
Hong Ping Jin

Through dimensional analysis of indentation parameters in this study, we propose an artificial neural network (ANN) model to extract the residual stress and strain-hardening exponent based on spherical indentation. The relationships between indentation parameters and the residual stress and material properties are numerically calibrated through training and validation of the ANN model. They enable the direct mapping of the characteristics of the indentation parameters to the residual stress and the elastic-plastic material properties. The proposed ANN model can be used to quickly and effectively determine the residual stress and strain-hardening exponent.


2002 ◽  
Vol 02 (03) ◽  
pp. 295-313
Author(s):  
AMIR MIRMIRAN ◽  
AMDE M. AMDE ◽  
ZEFANG XU

Intentional buckling as a fabrication technique for arch frameworks results in prestrains at every section of the arch, which in turn affect its strength and stability. A nonlinear corotational straight beam element with elastic, linear strain hardening material has been developed to study the elasto-plastic buckling of prestressed arches. The study indicates that for prestressed arches there is an interdependence between the slenderness and steepness ratios of the arch with the ratio of prestresses to the yield strength of the material, all of which control the magnitude and shape of buckling mode. While steeper arches are generally more stable in their elastic range, the effect of steepness ratio is reduced as the prestress exceeds 55% of the yield strength. Effects of loading and support conditions have also been considered. Although fixed supports result in more stable arches, their effectiveness depends on the steepness ratio and the level of prestresses. Finally, the effect of strain hardening on the plastic buckling of the arch is more pronounced for lower values of the plastic tangent modulus.


2013 ◽  
Vol 307 ◽  
pp. 364-367 ◽  
Author(s):  
Ali Ozturk ◽  
Müfit Gülgeç

This paper presents analytical solutions of the thermal stresses in a functionally graded solid cylinder with fixed ends in elastic region. These thermal stresses are due to the uniform heat generation inside the cylinder. Material properties of the functionally graded (FG) cylinder vary radially according to a parabolic form. The material properties are assumed to be independent of the temperature which are yield strength, elasticity modulus, thermal conduction coefficient, thermal expansion coefficient and Poisson’s ratio. The solutions for the thermal stresses are valid for both homogeneous and functionally graded materials.


Sign in / Sign up

Export Citation Format

Share Document