Chirality Dependence of Carbon Single-Walled Nanotube Material Properties: Axial Coefficient of Thermal Expansion

2006 ◽  
Vol 6 (7) ◽  
pp. 2167-2174 ◽  
Author(s):  
Davood Askari ◽  
Vinod P. Veedu ◽  
Mehrdad N. Ghasemi-Nejhad
Recycling ◽  
2019 ◽  
Vol 4 (1) ◽  
pp. 12 ◽  
Author(s):  
Kunal Mishra ◽  
Sarat Das ◽  
Ranji Vaidyanathan

More than 250,000 metric tons (600 million pounds) of carpet are dumped in landfills every year. That creates a significant concern regarding environmental deterioration and economic liability. It is therefore imperative to develop sustainable post-consumer carpet-based products for high-value engineering applications such as composite tooling. To be considered as an acceptable composite tooling material, the composite needs to meet certain required properties such as a low coefficient of thermal expansion, excellent compressive properties, and high a hardness value after repeated exposure to curing cycles. The tooling composites must also exhibit the ability to endure several curing cycles, without deteriorating the mechanical properties. In the present investigation, post-consumer carpet has been recycled in the form of structural composites for tooling applications. The recycled carpet composites have been reinforced with 0.5 wt.% of graphene nanoplatelets to modify the material properties of the carpet composites. The results from compressive and hardness experiments demonstrate that the recycled carpet preserved its mechanical integrity even after several curing cycles. This indicates that recycled carpet composites have the potential to be a low-cost composite tooling alternative for the industry.


1962 ◽  
Vol 29 (1) ◽  
pp. 151-158 ◽  
Author(s):  
A. Mendelson ◽  
S. W. Spero

A general method is presented for obtaining the elastoplastic stress and strain distributions in a thermally stressed plate of a strain-hardening material with temperature-varying modulus, yield point, and coefficient of thermal expansion. It is shown that for linear strain-hardening the solution can often be obtained in closed form. It is indicated that the error due to neglecting strain-hardening may sometimes be appreciable. The assumption that the total strain remains the same as that computed elastically (strain invariance) often leads to smaller errors than the neglect of strain-hardening.


1991 ◽  
Vol 226 ◽  
Author(s):  
Jun Ming Hu ◽  
Michael Pecht ◽  
Donald Barker

AbstractThe mechanical behavior of non-metalized GaAs wafer material at different temperatures were evaluated. The material properties of GaAs, including the modulus of elasticity, the modulus of rupture, the critical value of stress intensity factor, and the coefficient of thermal expansion, were experimentally determined over various temperature ranges.


Author(s):  
Kabeer Raza ◽  
Syed Sohail Akhtar ◽  
Abul Fazal M. Arif ◽  
Abbas Saeed Hakeem

Abstract Most of the currently used encapsulants are inefficient for cooled concentrated photovoltaic (CPV) systems. The encapsulant of cells for CPV systems, must have an optimum combination of thermal conductivity, coefficient of thermal expansion and long term shear modulus. In this work an improved backside composite encapsulation is designed and developed that can provide increased power output and longer life by enhancing the effectiveness of cooling and reducing thermal stresses. The best combination of material properties is identified through parametric studies on finite element model of CPV laminate using ethylene vinyl acetate as datum line. It is found that increasing thermal conductivity from 0.311 to 0.75 W/mK can improve the cooling and hence the power production by 2%. While long term shear modulus and coefficient of thermal expansion needs to be reduced for a longer service life. Using in-house built material design codes, optimum combinations of matrix and filler were identified that could provide the set range of properties. In line with material design code, a total of only four samples using thermoplastic polyurethane as matrix and Al2O3 or AlN as fillers were synthesized to validate the design experimentally. The material properties were measured and used in the parent finite element model to evaluate the performance of the experimentally developed material and to validate the parametric studies. A good agreement is found between the experimental and computational results and hence the overall methodology is found effective for application focused design and development of composite materials. It is expected that this material design and development approach will provide a useful guideline to the CPV manufacturing industries.


2013 ◽  
Vol 365-366 ◽  
pp. 277-280
Author(s):  
Jing Jiang Yan ◽  
Jian Ke ◽  
Huan Long Liu ◽  
Guo Zhi Wang ◽  
Da Hai Zhou

Hydraulic spool valve is one of the important elements in the hydraulic system. Considering the material properties of the fluid and solid, CFD models of the viscous temperature rise was built and calculated with the spool material influence on the viscous temperature rise and thermal deformation. Analyzed: the viscosity of the fluid was the main factor affecting on temperature rise, while the coefficient of thermal expansion of the spool was also the main factor to affect the throttling temperature rise of the deformation.


2015 ◽  
Author(s):  
Walid Mohamed ◽  
Hee Seok Roh

The DOE/NNSA Conversion [1] Program in the US aims to minimize the use of high enrichment uranium in civilian applications. This initiative is being approached by converting research and test reactors from the use of highly enriched uranium (HEU) to low enrichment uranium (LEU, <20% 235U) with high density of uranium to achieve stable operation of converted reactors. Among variety of fuel materials investigated to serve in the conversion process, U-Mo based alloys have shown stable and acceptable swelling response under typical operation conditions of research and test reactors. For the conversion of high performance research reactors, a large number of irradiation experiments were conducted to evaluate the mechanical behavior of the U-10Mo monolithic mini-plate; however, it is difficult to investigate all design and operation variables with potential impact on the irradiation behavior of the fuel experimentally. Thus, this study performed Finite Element Analyses (FEA) on a 3-D monolithic plate by changing material properties of components. The material properties considered in this study included thermal, mechanical, and irradiation specific properties of the fuel, cladding, and liner. Among FEA results, higher Young’s modulus of cladding material caused a significant decrease in all stress values in the three sections of the monolithic mini-plate. On the other hand, variation in the Young’s modulus of Zr-liner showed the minimal effect on the overall mechanical response of the monolithic mini-plate. Results showed that increasing the yield stress of the cladding material directly caused a increase in the maximum stress observed in the cladding section by almost 40 %. Considering the thermal properties of materials in the monolithic plate, maximum and minimum stress in fuel foil were found to either increase or decrease in proportional with the coefficient of thermal expansion of the fuel material. However, variation in the coefficient of thermal expansion in the cladding section caused a remarkable increase in peak stresses in the fuel foil. While mechanical and thermal properties of the foil, liner, and cladding sections are known, other irradiation-dependent properties such as coefficient of irradiation creep of U-10Mo are not firmly determined to date. The mechanical response of L1P756 is being simulated with different values of the coefficient of irradiation creep and the observed “bulging” in the plate will be compared to available post-irradiation measurements. Thus, it will be possible to determine an accurate value of irradiation creep coefficient of U-10Mo which in turn would allow predicting its mechanical behavior under different irradiation conditions.


2010 ◽  
Vol 132 (1) ◽  
Author(s):  
Hu Guojun ◽  
Andrew A. O. Tay ◽  
Luan Jing-En ◽  
Ma Yiyi

The reliability of the flip chip package is strongly influenced by underfill, which has a much higher coefficient of thermal expansion (CTE) compared with other packaging materials and leads to large thermomechanical stresses developed during the assembly processes. Thermal expansion mismatch between different materials causes interface delamination between epoxy molding compound and silicon die as well as interface delamination between underfill and silicon die. The main objective of this study is to investigate the effects of underfill material properties, fillet height, and silicon die thickness on the interface delamination between epoxy molding compound and silicon die during a lead-free solder reflow process based on the modified virtual crack closure method. Based on finite element analysis and experiment study, it can be concluded that the energy release rates at reflow temperature are the suitable criteria for the estimation of interface delamination. Furthermore, it is found that underfill material properties (elastic modulus, CTE, and chemical cure shrinkage), fillet height, and silicon die thickness can be optimized to reduce the risk of interface delamination between epoxy molding compound and silicon die in the flip chip ball grid array package.


Alloy Digest ◽  
1987 ◽  
Vol 36 (8) ◽  

Abstract NILO alloy 36 is a binary iron-nickel alloy having a very low and essentially constant coefficient of thermal expansion at atmospheric temperatures. This datasheet provides information on composition, physical properties, elasticity, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Fe-79. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1971 ◽  
Vol 20 (1) ◽  

Abstract UNISPAN LR35 offers the lowest coefficient of thermal expansion of any alloy now available. It is a low residual modification of UNISPAN 36 for fully achieving the demanding operational level of precision equipment. This datasheet provides information on composition, physical properties, hardness, and tensile properties. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and surface treatment. Filing Code: Fe-46. Producer or source: Cyclops Corporation.


Sign in / Sign up

Export Citation Format

Share Document