A Variational Principle Applied to the Plane Slider Bearing

1965 ◽  
Vol 87 (4) ◽  
pp. 1081-1082
Author(s):  
Clarence J. Maday

A minimum principle from hydrodynamics is applied to the one-dimensional plane slider bearing which is provided with a self-seeking pivot mechanism. An analysis was made in which a certain integral was minimized subject to the constraint that the load, speed, and viscosity were held fixed. This analysis showed that this corresponded exactly to that combination of minimum film thickness and inclination which would minimize the power loss subject to the above-mentioned constraint. It was also found that, in order to satisfy the minimum principle, there exists a definite numerical ratio between the slider inclination and the nondimensional minimum film thickness. This, in turn, fixed the pivot location relative to the length of the slider.

1985 ◽  
Vol 107 (1) ◽  
pp. 59-67 ◽  
Author(s):  
P. Bourgin ◽  
B. Gay

Pontryagin’s Maximum Principle is used to show that the configuration of the one-dimensional slider bearing which carries the maximum load for a specified minimum film thickness, is a modified Rayleigh bearing. The lubricant may be any Generalized Newtonian Fluid. Having selected two optimization criteria (1: maximum load capacity for a given minimum film thickness—2: minimum friction force for a specified load), a numerical program allows one to determine the optimal step bearing associated with the lubricant non-Newtonian viscosity. Several examples are worked out, showing that significant gains are expected, in comparison with the results obtained for the classical (Newtonian) Rayleigh bearing.


1968 ◽  
Vol 90 (1) ◽  
pp. 281-284 ◽  
Author(s):  
C. J. Maday

Bounded variable methods of the calculus of variations are used to determine the optimum or maximum load capacity hydrodynamic one-dimensional gas slider bearing. A lower bound is placed on the minimum film thickness in order to keep the load finite, and also to satisfy the boundary conditions. Using the Weierstrass-Erdmann corner conditions and the Weierstrass E-function it is found that the optimum gas slider bearing is stepped with a convergent leading section and a uniform thickness trailing section. The step location and the leading section film thickness depend upon the bearing number and compression process considered. It is also shown that the bearing contains one and only one step. The difference in the load capacity and maximum film pressure between the isothermal and adiabatic cases increases with increasing bearing number.


1972 ◽  
Vol 94 (3) ◽  
pp. 275-279 ◽  
Author(s):  
S. M. Rohde

The film profile which minimizes the coefficient of friction and the film profile which minimizes the total friction force for a given load for a one-dimensional slider bearing are determined using a variational method. The lubricant is assumed to be incompressible and of constant viscosity. The flow is assumed to be laminar, and the optimization in the first case is based upon an assumed minimum film thickness. It is shown by the use of the nonlocal variational formulation that these profiles do yield a minimum among all admissible profiles.


1970 ◽  
Vol 92 (3) ◽  
pp. 482-487 ◽  
Author(s):  
C. J. Maday

Pontryagin’s Maximum Principle is used to determine the journal bearing which supports the maximum load for a given minimum film thickness and a specified load direction. The one-dimensional configuration which uses a constant-viscosity, incompressible lubricant is considered. Comparison shows that the optimum bearing carries a load about 13.5 percent greater than the maximum carried by the usual full-Sommerfeld bearing and about 121 percent greater than that carried by the half-Sommerfeld unit. The problem is formulated subject to the constraints of a fixed load direction and a specified minimum film thickness while the only boundary condition imposed is that the pressure must vanish at the inlet and at the outlet. The actual extent of the bearing is determined in the optimization process and it is shown that this extent is 360 deg. Further, the bearing is stepped with only two regions of different but constant film thickness.


1994 ◽  
Vol 116 (3) ◽  
pp. 621-627 ◽  
Author(s):  
H. Desbordes ◽  
M. Fillon ◽  
C. Chan Hew Wai ◽  
J. Frene

A theoretical nonlinear analysis of tilting-pad journal bearings is presented for small and large unbalance loads under isothermal conditions. The radial displacements of internal pad surface due to pressure field are determined by a two-dimensional finite element method in order to define the actual film thickness. The influence of pad deformations on the journal orbit, on the minimum film thickness and on the maximum pressure is studied. The effects of pad displacements are to decrease the minimum film thickness and to increase the maximum pressure. The orbit amplitude is also increased by 20 percent for the large unbalance load compared to the one obtained for rigid pad.


Author(s):  
O. Adamidis ◽  
G. S. P. Madabhushi

Loosely packed sand that is saturated with water can liquefy during an earthquake, potentially causing significant damage. Once the shaking is over, the excess pore water pressures that developed during the earthquake gradually dissipate, while the surface of the soil settles, in a process called post-liquefaction reconsolidation. When examining reconsolidation, the soil is typically divided in liquefied and solidified parts, which are modelled separately. The aim of this paper is to show that this fragmentation is not necessary. By assuming that the hydraulic conductivity and the one-dimensional stiffness of liquefied sand have real, positive values, the equation of consolidation can be numerically solved throughout a reconsolidating layer. Predictions made in this manner show good agreement with geotechnical centrifuge experiments. It is shown that the variation of one-dimensional stiffness with effective stress and void ratio is the most crucial parameter in accurately capturing reconsolidation.


Author(s):  
P Sinha ◽  
J S Kennedy ◽  
C M Rodkiewicz ◽  
P Chandra ◽  
R Sharma ◽  
...  

To study the effects of surface roughness and additives in lubrication, a generalized form of Reynolds equation is derived by taking into account the roughness interaction zones adjacent to the moving rough surfaces as sparsely porous matrices and purely hydrodynamic film of micropolar fluid characterizing the lubricant with additives. A particular, one-dimensional form of this equation is used to study these effects on the elastohydrodynamic (EHD) minimum film thickness at the inlet, between two rough rollers. It is shown that for the low permeability of the roughness zone, the EHD film thickness increases as the mean height of the asperities increases, whereas for the high permeability it decreases. The EHD film thickness is also found to increase with the concentration of the additives and the molecular size of the particles. These results are in conformity at least qualitatively, with various experimental and theoretical investigations, cited in the paper.


Author(s):  
Shivam S Alakhramsing ◽  
Matthijn de Rooij ◽  
Dirk Jan Schipper ◽  
Mark van Drogen

In this work, a full numerical solution to the cam–roller follower-lubricated contact is provided. The general framework of this model is based on a model describing the kinematics, a finite length line contact isothermal-EHL model for the cam–roller contact and a semi-analytical lubrication model for the roller–pin bearing. These models are interlinked via an improved roller–pin friction model. For the numerical study, a cam–roller follower pair, as part of the fuel injection system in Diesel engines, was analyzed. The results, including the evolution of power losses, minimum film thickness and maximum pressures, are compared with analytical solutions corresponding to infinite line contact models. The main findings of this work are that for accurate prediction of crucial performance indicators such as minimum film thickness, maximum pressure and power losses a finite length line contact analysis is necessary due to non-typical EHL characteristics of the pressure and film thickness distributions. Furthermore, due to the high contact forces associated with cam–roller pairs as part of fuel injection units, rolling friction is the dominant power loss contributor as roller slippage appears to be negligible. Finally, the influence of the different roller axial surface profiles on minimum film thickness, maximum pressure and power loss is shown to be significant. In fact, due to larger contact area, the maximum pressure can be reduced and the minimum film thickness can be increased significantly, however, at the cost of higher power losses.


1983 ◽  
Vol 105 (3) ◽  
pp. 317-320 ◽  
Author(s):  
S. K. Hati ◽  
S. S. Rao

The optimum design of an one-dimensional cooling fin is considered by including all modes of heat transfer in the problem formulation. The minimum principle of Pontryagin is applied to determine the optimum profile. A new technique is used to solve the reduced differential equations with split boundary conditions. The optimum profile found is compared with the one obtained by considering only conduction and convection.


Sign in / Sign up

Export Citation Format

Share Document