Failure of Brittle and Ductile Hard Disks Due to High Shock Levels

2009 ◽  
Vol 131 (11) ◽  
Author(s):  
Jianfeng Xu ◽  
Izhak Etsion ◽  
Frank E. Talke

The failure due to accidental drop of magnetic recording disks made of brittle or ductile materials is of great interest in the design of small form factor hard disk drives. In this study, fracture of glass disks (brittle material) and plastic deformation of aluminum disks (ductile material) at very high shock levels caused by accidental drop are investigated using finite element analysis. It is found that failure inception for both disk types occurs at the inside perimeter of the disk. For glass disks, cracks are found to propagate toward the outer perimeter of the disk along distinct radial lines associated with the largest bending moment of the disk. The critical shock level at which failure originates increases with an increase in the clamp diameter, a reduction in the disk diameter, and an increase in the thickness of the disk. Some experimental results are presented to validate the numerical model.

1995 ◽  
Vol 39 ◽  
pp. 109-117
Author(s):  
Burkhard Beckhoff ◽  
Birgit Kanngießer

X-ray focusing based on Bragg reflection at curved crystals allows collection of a large solid angle of incident radiation, monochromatization of this radiation, and condensation of the beam reflected at the crystal into a small spatial cross-section in a pre-selected focal plane. Thus, for the Bragg reflected radiation, one can achieve higher intensities than for the radiation passing directly to the same small area in the focal plane. In that case one can profit considerably from X-ray focusing in an EDXRF arrangement. The 00 2 reflection at Highly Oriented Pyrolytic Graphite (HOPG) crystals offers a very high intensity of the Bragg reflected beam for a wide range of photon energies. Furthermore, curvature radii smaller than 10 mm can be achieved for HOPG crystals ensuring efficient X-ray focusing in EDXRF applications. For the trace analysis of very small amounts of specimen material deposited on small areas of thin-filter backings, HOPG based X-ray focusing may be used to achieve a very high intensity of monochromatic excitation radiation.


2006 ◽  
Vol 324-325 ◽  
pp. 951-954 ◽  
Author(s):  
Qing Min Yu ◽  
Zhu Feng Yue ◽  
Yong Shou Liu

Fracture along an interface between materials plays a major role in failure of material. In this investigation, finite element calculations with Kachanov–Rabotnov damage law were carried out to study the creep damage distribution near the interface cavity in bimaterial specimens. The specimens with central hole were divided into three types. The material parameters of K-R law used in this paper were chosen for a brittle material and ductile material. All calculations were performed under four load cases. Due to the difference between elastic moduli of the bounded materials, the elastic stress field as a function of the Young’s modulus ratio (R=E1/E2) was determined. At the same time, the influence of model type on elastic stress distribution near the cavity was considered. Under the same conditions, the material with larger modulus is subjected to larger stress. The creep damage calculations show that the location of the maximum damage is different for each model. The distributions of creep damage for all three models are dependent on the material properties and load cases.


2014 ◽  
Vol 1065-1069 ◽  
pp. 19-22
Author(s):  
Zhen Feng Wang ◽  
Ke Sheng Ma

Based on ABAQUS finite element analysis software simulation, the finite element model for dynamic analysis of rigid pile composite foundation and superstructure interaction system is established, which selects the two kinds of models, by simulating the soil dynamic constitutive model, selecting appropriate artificial boundary.The influence of rigid pile composite foundation on balance and imbalance of varying rigidity is analyzed under seismic loads. The result shows that the maximum bending moment and the horizontal displacement of the long pile is much greater than that of the short pile under seismic loads, the long pile of bending moment is larger in the position of stiffness change. By constrast, under the same economic condition, the aseismic performance of of rigid pile composite foundation on balance of varying rigidity is better than that of rigid pile composite foundation on imbalance of varying rigidity.


2011 ◽  
Vol 255-260 ◽  
pp. 718-721
Author(s):  
Z.Y. Wang ◽  
Q.Y. Wang

Problems regarding the combined axial force and bending moment for the behaviour of semi-rigid steel joints under service loading have been recognized in recent studies. As an extended research on the cyclic behaviour of a bolted endplate joint, this study is performed relating to the contribution of column axial force on the cyclic behaviour of the joint. Using finite element analysis, the deteriorations of the joint performance have been evaluated. The preliminary parametric study of the joint is conducted with the consideration of flexibility of the column flange. The column axial force was observed to significantly influence the joint behaviour when the bending of the column flange dominates the failure modes. The reductions of moment resistance predicted by numerical analysis have been compared with codified suggestions. Comments have been made for further consideration of the influence of column axial load in seismic design of bolted endplate joints.


2005 ◽  
Vol 05 (01) ◽  
pp. 89-103 ◽  
Author(s):  
K. RAMAKRISHNA ◽  
I. SRIDHAR ◽  
S. SIVASHANKER ◽  
V. K. GANESH ◽  
D. N. GHISTA

A major concern when a fractured bone is fastened by stiff-plates to the bone on its tensile surface is excessive stress shielding of the bone. The compressive stress shielding at the fracture-interface immediately after fracture-fixation delays bone healing. Likewise, the tensile stress shielding of the healed bone underneath the plate also does not enable it to recover its tensile strength. Initially, the effect of a uniaxial load and a bending moment on the assembly of bone and plate is investigated analytically. The calculations showed that the screws near the fracture site transfers more load than the screws away from the fracture site in axial loading and it is found that less force is required when the screw is placed near to fracture site than the screw placed away from the fracture site to make the bone and plate bend with same radius of curvature when subjected to bending moment. Finally, the viability of using a stiffness graded bone-plate as a fixator is studied using finite element analysis (FEA): the stiffness-graded plate cause less stress-shielding than stainless steel plate.


2018 ◽  
Author(s):  
J. Wang ◽  
C. Shi ◽  
Y. Liu ◽  
X. Bao

Flexible cylinders, such as marine risers, often experience sustained vortex-induced vibration (VIV). Both helical strakes and fairings are demonstrated to be effective in suppressing VIV, while, helical strakes result in large drag, which increases the rotational angle and bending moment at the riser hang-off location and, fairings are cumbersome in term of storage, installation and maintenance. This study was inspired by the giant Saguaro Cacti which grow in desert region. Saguaro Cacti have shallow root system, but can grow up to fifty feet in height and can withstand very high wind velocities. In this study, numerical simulations of flow past a stationary cactus-shaped cylinder are performed in two-dimensional field at a low Reynolds number of 200. The hydrodynamic coefficients and the vortex-shedding patterns of a cactus-shaped cylinder are compared with those of a circular cylinder. In addition, a set of two cactus-shaped cylinders of tandem arrangement are also studied to investigate the effects of wake. Results showed that a cactus-shaped cylinder can reduce the drag, lift, and Strouhal number, which suggests its potential as an alternative technology to suppress VIV of a riser.


Author(s):  
Abe Zeid ◽  
Sagar Kamarthi

Prognostics and health management of computer hard disk drives is beneficial from two different angles: it can help computer users plan for timely replacement of HDDs before they catastrophically fail and cause serious data loss; it can also help product recover facilities reuse hard disks recovered from the end-of-life computers for building refurbished computers. This paper presents a HDD health assessment method using Self-Monitoring, Analysis, and Reporting Technology (SMART) attributes. It also presents the state-of-the art results in monitoring the condition of hard disks and offers future directions for distributed hard disk monitoring.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Van Binh Phung ◽  
Anh Tuan Nguyen ◽  
Hoang Minh Dang ◽  
Thanh-Phong Dao ◽  
V. N. Duc

The present paper analyzes the vibration issue of thin-walled beams under combined initial axial load and end moment in two cases with different boundary conditions, specifically the simply supported-end and the laterally fixed-end boundary conditions. The analytical expressions for the first natural frequencies of thin-walled beams were derived by two methods that are a method based on the existence of the roots theorem of differential equation systems and the Rayleigh method. In particular, the stability boundary of a beam can be determined directly from its first natural frequency expression. The analytical results are in good agreement with those from the finite element analysis software ANSYS Mechanical APDL. The research results obtained here are useful for those creating tooth blade designs of innovative frame saw machines.


2018 ◽  
Vol 55 (5) ◽  
pp. 720-735 ◽  
Author(s):  
Yi Rui ◽  
Mei Yin

Thermo-active diaphragm walls that combine load bearing ability with a ground source heat pump (GSHP) are considered to be one of the new technologies in geotechnical engineering. Despite the vast range of potential applications, current thermo-active diaphragm wall designs have very limited use from a geotechnical aspect. This paper investigates the wall–soil interaction behaviour of a thermo-active diaphragm wall by conducting a thermo-hydro-mechanical finite element analysis. The GSHP operates by circulating cold coolant into the thermo-active diaphragm wall during winter. Soil contraction and small changes in the earth pressures acting on the wall are observed. The strain reversal effect makes the soil stiffness increase when the wall moves in the unexcavated side direction, and hence gives different trends for long-term wall movements compared to the linear elastic model. The GSHP operation makes the wall move in a cyclic manner, and the seasonal variation is approximately 0.5–1 mm, caused by two factors: the thermal effects on the deformation of the diaphragm wall itself and the thermally induced volume change of the soil and pore water. In addition, it is found that the change in bending moment of the wall due to the seasonal GSHP cycle is caused mainly by the thermal differential across the wall during the winter, because the seasonal changes in earth pressures acting on the diaphragm wall are very limited.


Author(s):  
Tomohiro Takaki ◽  
Toshimichi Fukuoka

The most important factor for the leakage problem of pipe flange connections is considered to be contact pressure distribution at the gasket bearing surface in service. In this study, the mechanical behaviors of the pipe flange connection are evaluated using FEM as a three-dimensional contact problem, in which a gasket is modeled as a nonlinear one-dimensional gasket element. Here, the contact pressure distributions at the gasket bearing surface and the variations of the bolt stress are estimated under uniform bolt preloads or nonuniform ones due to the elastic interaction during bolting up. The numerical procedure proposed here can successively deal with the processes of bolt-up, applying inner pressure and applying bending moment. The analytical objects are pipe flanges specified in JIS B 2238 with compressed asbestos sheet gaskets being inserted. The validity of the numerical method is ascertained by experiment.


Sign in / Sign up

Export Citation Format

Share Document