Multibody Dynamic Model of Web Guiding System With Moving Web

Author(s):  
Lei Yu ◽  
Zhihua Zhao ◽  
Gexue Ren

In this paper, a multibody dynamic model is established to simulate the dynamics and control of moving web with its guiding system, where the term moving web is used to describe thin materials, which are manufactured and processed in a continuous, flexible strip form. In contrast with available researches based on Eulerian description and beam assumption, webs are described by Lagrangian formulation with the absolute nodal coordinate formulation (ANCF) plate element, which is based on Kirchhoff’s assumptions that material normals to the original reference surface remain straight and normal to the deformed reference surface, and the nonlinear elasticity theory that accounts for large displacement, large rotation, and large deformation. The rollers and guiding mechanism are modeled as rigid bodies. The distributed frictional contact forces between rollers and web are considered by Hertz contact model and are evaluated by Gauss quadrature. The proportional integral (PI) control law for web guiding is also embedded in the multibody model. A series of simulations on a typical web-guide system is carried out using the multibody dynamics approach for web guiding system presented in this study. System dynamical information, for example, lateral displacement, stress distribution, and driving moment for web guiding, are obtained from simulations. Parameter sensitivity analysis illustrates the effect of influence variables and effectiveness of the PI control law for lateral movement control of web that are verified under different gains. The present Lagrangian formulation of web element, i.e., ANCF element, is not only capable of describing the large movement and deformation but also easily adapted to capture the distributed contact forces between web and rollers. The dynamical behavior of the moving web can be accurately described by a small number of ANCF thin plate elements. Simulations carried out in this paper show that the present approach is an effective method to assess the design of web guiding system with easily available desktop computers.

2017 ◽  
Vol 133 ◽  
pp. 02007
Author(s):  
Nikolay Pavlov ◽  
Evgeni Sokolov ◽  
Mihail Dodov ◽  
Stoyan Stoyanov

Author(s):  
Huayuan Feng ◽  
Subhash Rakheja ◽  
Wen-Bin Shangguan

The drive shaft system with a tripod joint is known to cause lateral vibration in a vehicle due to the axial force generated by various contact pairs of the tripod joint. The magnitude of the generated axial force, however, is related to various operating factors of the drive shaft system in a complex manner. The generated axial force due to a drive shaft system with a tripod joint and a ball joint was experimentally characterized considering ranges of operational factors, namely, the input toque, the shaft rotational speed, the articulation angle, and the friction. The data were analyzed to establish an understanding of the operational factors on the generated axial force. Owing to the observed significant effects of all the factors, a multibody dynamic model of the drive shaft system was formulated for predicting generated axial force under different operating conditions. The model integrated the roller–track contact model and the velocity-based friction model. Based on a quasi-static finite element model, a new methodology was proposed for identifying the roller–track contact model parameters, namely, the contact stiffness and force index. To further enhance the calculation accuracy of the multibody dynamic model, a new methodology for identifying the friction model parameters and the force index was proposed by using the measured data. The validity of the model was demonstrated by comparing the model-predicted and measured magnitudes of generated axial force for the ranges of operating factors considered. The results showed that the generated axial force of the drive shaft system can be calculated more accurately and effectively by using the identified friction and contact parameters in the paper.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Behnam Ghalamchi ◽  
Jussi Sopanen ◽  
Aki Mikkola

Since spherical roller bearings can carry high load in both axial and radial direction, they are increasingly used in industrial machineries and it is becoming important to understand the dynamic behavior of SRBs, especially when they are affected by internal imperfections. This paper introduces a dynamic model for an SRB that includes an inner and outer race surface defect. The proposed model shows the behavior of the bearing as a function of defect location and size. The new dynamic model describes the contact forces between bearing rolling elements and race surfaces as nonlinear Hertzian contact deformations, taking radial clearance into account. Two defect cases were simulated: an elliptical surface on the inner and outer races. In elliptical surface concavity, it is assumed that roller-to-race-surface contact is continuous as each roller passes over the defect. Contact stiffness in the defect area varies as a function of the defect contact geometry. Compared to measurement data, the results obtained using the simulation are highly accurate.


Author(s):  
Ali Farokhi Nejad ◽  
Giorgio Chiandussi ◽  
Vincenzo Solimine ◽  
Andrea Serra

The synchronizer mechanism represents the essential component in manual, automatic manual, and dual-clutch transmissions. This paper describes a multibody dynamic model for analysis of a synchronizer mechanism subjected to different operational conditions. The three-dimensional multi-dynamic model is developed to predict the dynamic response of synchronizer, especially for calculation of synchronization time. For the purpose of validation, three different synchronizers (single-cone, double-cone, and triple-cone synchronizers) were used on the test rig machine. For the purpose of synchronizing time estimation, an analytical formulation is proposed. The results of the analytical and multibody dynamic analyses were compared with the experimental data, showing a good agreement. The results of analytical and numerical approaches show that the predicted time of synchronization is more precise than previous works. A sensitivity analysis was performed on the single-cone synchronizer, and the effect of tolerance dimension on the dynamic behavior of the synchronizer was reported.


2014 ◽  
Vol 11 (03) ◽  
pp. 1450020 ◽  
Author(s):  
John Fasoulas ◽  
Michael Sfakiotakis

This paper presents a general dynamic model that describes the two-dimensional grasp by two robotic fingers with soft fingertips. We derive the system's kinematics and dynamics by incorporating rolling constraints that depend on the deformation and on the rolling distance characteristics of the fingertips' material. We analyze the grasp stability at equilibrium, and conclude that the rolling properties of the fingertips can play an important role in grasp stability, especially when the width of the grasped object is small compared to the radius of the tips. Subsequently, a controller, which is based on the fingertips' rolling properties, is proposed for stable grasping concurrent with object orientation control. We evaluate the dynamic model under the proposed control law by simulations and experiments that make use of two different types of soft fingertip materials, through which it is confirmed that the dynamic model can successfully capture the effect of the fingertips' deformation and their rolling distance characteristics. Finally, we use the dynamic model to demonstrate by simulations the significance of the fingertips' rolling properties in grasping thin objects.


2013 ◽  
Vol 30 (4) ◽  
pp. 433-447 ◽  
Author(s):  
Cai Jin Yang ◽  
Di Feng Hong ◽  
Ge Xue Ren ◽  
Zhi Hua Zhao

Author(s):  
Ewa Kardas-Cinal

Improving the running safety and reducing the risk of derailments are the key objectives in the assessment of the running characteristics of railway vehicles. The present study of the safety against derailment is focused on the effect of wheelset hunting on the derailment coefficient Y/Q and, especially, how it is reflected in the power spectral density (PSD) of Y/Q. The lateral Y and vertical Q forces at the wheel/rail contact are obtained in numerical simulations for a four-axle railway vehicle moving at a constant velocity along a tangent track with random geometrical irregularities. The PSD of Y/Q, calculated as a function of spatial frequency, is found to have a characteristic structure with three peaks for the leading wheelsets and one peak for the trailing wheelsets of the front and rear bogies. The positions of the PSD maxima remain unchanged with increasing ride velocity, while their magnitudes and shapes evolve. One of the PSD peaks occurs for all wheelsets at the same spatial frequency corresponding to the wheelset hunting, while an additional peak at the double hunting frequency is found for the leading wheelsets. Such a peak structure is also found in the PSD of Y/Q determined in simulations with modified parameters of the vehicle primary suspension and for different track sections. The peak at the double hunting frequency is shown, by a detailed analysis of the contact forces, the flange angles and their PSDs, to result from the nonlinear geometry of the wheel/rail contact leading to the second-harmonic term in Y/Q. The emergence of this peak is also closely related to the phase difference between the hunting oscillations of the wheelset lateral displacement and the oscillations of its yaw angle, for which the difference is significantly smaller for the leading wheelset than for the trailing one. Finally, the effect of wheelset hunting is also shown to manifest itself in the strong dependence of the running average of Y/Q, which is used in the railway technical safety standards for the assessment of the safety against derailment (with the Nadal criterion), on the applied window width.


Author(s):  
Jinxin Yu ◽  
Weimin Chen

Abstract The lateral displacement and the rotational angle of marine riser are likely to get larger as it is in stronger ocean current and, particularly, undergoes the consequences such as vortex-induced vibration or collisions between individual risers. The riser vibration with large amplitude value will lead to fatigue or coating damage of the structural body. In this study, the active vibration control, in terms of its angle and the displacement reductions, of a flexible riser under time-varying distributed load are considered using boundary control. The governing equations of the structural dynamics involving the control system of a flexible riser are built. The riser is modeled as an Euler-Bernoulli beam under the actions of ocean loads and the feedback controller. A torque actuator is introduced at the upper riser boundary, and the control law is employed to generate the required signal for riser angle control and displacement reduction. The feed-back control law is designed in state space, and the optimization of the control law is implemented based on the LQR approach. The linear quadratic regulator is used to determine the gain matrix, which can calculate the boundary control law by solving the Recatti equation. Based on the numerical simulations, the responses of the open-loop system and closed-loop system are presented and compared. The effectiveness of the vibration suppression of the flexible riser is examined.


Author(s):  
Shuhua Su ◽  
Gang Chen

In order to achieve stable steering and path tracking, a lateral robust iterative learning control method for unmanned driving robot vehicle is proposed. Combining the nonlinear tire dynamic model with the vehicle dynamic model, the nonlinear vehicle dynamic model is constructed. The structure of steering manipulator of unmanned driving robot vehicle is analyzed, and the kinematics model and dynamics model of steering manipulator of unmanned driving robot vehicle are established. The structure of vehicle steering system is analyzed, and the dynamic model of vehicle steering system is established. Vehicle steering angle model is established by taking vehicle path tracking error and vehicle yaw angle error as input. Combining with the typical iterative learning control law, the robust term is added to the control law, and a robust iterative learning controller for steering manipulator system of unmanned driving robot vehicle is designed. The proposed controller’s stability and astringency are proved. The effectiveness of the proposed method is verified by comparing it with other control methods and human driver simulation tests.


Sign in / Sign up

Export Citation Format

Share Document