Flow Boiling of R134a in Circular Microtubes—Part II: Study of Critical Heat Flux Condition

2011 ◽  
Vol 133 (5) ◽  
Author(s):  
Saptarshi Basu ◽  
Sidy Ndao ◽  
Gregory J. Michna ◽  
Yoav Peles ◽  
Michael K. Jensen

A detailed experimental study was carried out on the critical heat flux (CHF) condition for flow boiling of R134a in single circular microtubes. The test sections had inner diameters (ID) of 0.50 mm, 0.96 mm, and 1.60 mm. Experiments were conducted over a large range of mass flux, inlet subcooling, saturation pressure, and vapor quality. CHF occurred under saturated conditions at high qualities and increased with increasing mass fluxes, tube diameters, and inlet subcoolings. CHF generally, but not always, decreases with increasing saturation pressures and vapor qualities. The experimental data were mapped to the flow pattern maps developed by Hasan [2005, “Two-Phase Flow Regime Transitions in Microchannels: A Comparative Experimental Study,” Nanoscale Microscale Thermophys. Eng., 9, pp. 165–182] and Revellin and Thome [2007, “A New Type of Diabatic Flow Pattern Map for Boiling Heat Transfer in Microchannels,” J. Micromech. Microeng., 17, pp. 788–796]. Based on these maps, CHF mainly occurred in the annular flow regime in the larger tubes. The flow pattern for the 0.50 mm ID tube was not conclusively identified. Four correlations—the Bowring correlation, the Katto-Ohno correlation, the Thome correlation, and the Zhang correlation—were used to predict the experimental data. The correlations predicted the correct experimental trend, but the mean absolute error (MAE) was high (>15%) A new correlation was developed to fit the experimental data with a MAE of 10%.

Author(s):  
Wai Keat Kuan ◽  
Satish G. Kandlikar

The present work is aimed toward understanding the effect of flow boiling stability on critical heat flux (CHF) with Refrigerant-123 (R-123) in microchannel passages. Experimental data and theoretical model to predict the CHF are the focus of this work. The experimental test section has six parallel microchannels with each having a cross sectional area of 1054 × 157 μm2. The effect of flow instabilities in microchannels is investigated using flow restrictors at the inlet of each microchannel to stabilize the flow boiling process and avoid the backflow phenomena. This technique resulted in successfully stabilizing the flow boiling process as seen through a high-speed camera. The present CHF result is found to correlate to mean absolute error (MAE) of 24.1% with a macroscale empirical equation by Katto [13]. A theoretical analysis of flow boiling phenomena revealed that the ratio of evaporation momentum to surface tension forces is an important parameter. For the first time, a theoretical CHF model is proposed using these underlying forces to represent CHF mechanism in microchannels, and its correlation agrees with the experimental data with MAE of 2.5%.


Author(s):  
Christopher Konishi ◽  
Hyoungsoon Lee ◽  
Issam Mudawar ◽  
Mohammad M. Hasan ◽  
Henry K. Nahra ◽  
...  

Author(s):  
Anand P. Roday ◽  
Michael K. Jensen

The critical heat flux (CHF) condition sets an upper limit on the flow-boiling heat transfer process. With the growing demand for the use of two-phase flow in micro and nano-sized devices, there is a strong need to understand the CHF phenomenon in channels of such small dimensions. This study experimentally investigates the critical heat flux condition during flow boiling in a single stainless steel microtube of two different diameters—0.427mm, and 0.286 mm. Degassed water is the working fluid. The effects of various parameters—diameter, mass flux (350–1500 kg/m2s), inlet subcooling (2°C–50°C), and length-to-diameter ratio (75–200) on the CHF condition are studied for the exit condition being nearly atmospheric pressure. The CHF increases with an increase in mass flux. The effect of the inlet subcooling on the CHF condition is more complex. With a decreasing inlet subcooling, the CHF decreases until saturated liquid is reached; thereafter, the CHF increases with quality.


2019 ◽  
Vol 141 (4) ◽  
Author(s):  
S. R. Darr ◽  
J. W. Hartwig ◽  
J. Dong ◽  
H. Wang ◽  
A. K. Majumdar ◽  
...  

Recently, two-phase cryogenic flow boiling data in liquid nitrogen (LN2) and liquid hydrogen (LH2) were compared to the most popular two-phase correlations, as well as correlations used in two of the most widely used commercially available thermal/fluid design codes in Hartwig et al. (2016, “Assessment of Existing Two Phase Heat Transfer Coefficient and Critical Heat Flux on Cryogenic Flow Boiling Quenching Experiments,” Int. J. Heat Mass Transfer, 93, pp. 441–463). Results uncovered that the correlations performed poorly, with predictions significantly higher than the data. Disparity is primarily due to the fact that most two-phase correlations are based on room temperature fluids, and for the heating configuration, not the quenching configuration. The penalty for such poor predictive tools is higher margin, safety factor, and cost. Before control algorithms for cryogenic transfer systems can be implemented, it is first required to develop a set of low-error, fundamental two-phase heat transfer correlations that match available cryogenic data. This paper presents the background for developing a new set of quenching/chilldown correlations for cryogenic pipe flow on thin, shorter lines, including the results of an exhaustive literature review of 61 sources. New correlations are presented which are based on the consolidated database of 79,915 quenching points for a 1.27 cm diameter line, covering a wide range of inlet subcooling, mass flux, pressure, equilibrium quality, flow direction, and even gravity level. Functional forms are presented for LN2 and LH2 chilldown correlations, including film, transition, and nucleate boiling, critical heat flux, and the Leidenfrost point.


Author(s):  
Sung Joong Kim ◽  
Tom McKrell ◽  
Jacopo Buongiorno ◽  
Lin-Wen Hu

Nanofluids are known as dispersions of nano-scale particles in solvents. Recent reviews of pool boiling experiments using nanofluids have shown that they have greatly enhanced critical heat flux (CHF). In many practical heat transfer applications, however, it is flow boiling that is of particular importance. Therefore, an experimental study was performed to verify whether or not a nanofluid can indeed enhance the CHF in the flow boiling condition. The nanofluid used in this work was a dispersion of aluminum oxide particles in water at very low concentration (≤0.1 v%). CHF was measured in a flow loop with a stainless steel grade 316 tubular test section of 5.54 mm inner diameter and 100 mm long. The test section was designed to provide a maximum heat flux of about 9.0 MW/m2, delivered by two direct current power supplies connected in parallel. More than 40 tests were conducted at three different mass fluxes of 1,500, 2,000, and 2,500 kg/m2sec while the fluid outlet temperature was limited not to exceed the saturation temperature at 0.1 MPa. The experimental results show that the CHF could be enhanced by as much as 45%. Additionally, surface inspection using Scanning Electron Microscopy reveals that the surface morphology of the test heater has been altered during the nanofluid boiling, which, in turn, provides valuable clues for explaining the CHF enhancement.


2013 ◽  
Vol 135 (10) ◽  
Author(s):  
Mark J. Miner ◽  
Patrick E. Phelan

A variety of predictive correlations for critical heat flux (CHF) are examined in light of the growing body of work exploring enhanced flow boiling CHF via cross-sectional expansion. The analysis considers the effect of a small perturbation of the diameter of a circular microchannel on the predictions made by the selected criteria, and seeks to demonstrate an optimum rate of expansion. It is demonstrated that a nonzero diameter expansion necessarily improves performance under several criteria for critical heat flux, and an optimum expansion rate exists for many of these criteria. CHF relations are seen to follow a few distinct types, and those relations which contemplate effects which may directly influence CHF, such as pressure and phase velocity, tend to better reflect the experimentally demonstrated effect of the expanding channel diameter on CHF. Experimental data are examined from several investigators, including the authors' group, and the validity of both the criteria and the analysis is compared to the data.


Sign in / Sign up

Export Citation Format

Share Document