An Experimental Study of Natural Convection in Vertical, Open-Ended, Concentric, and Eccentric Annular Channels

2011 ◽  
Vol 133 (12) ◽  
Author(s):  
G. H. Choueiri ◽  
S. Tavoularis

The effects of eccentricity on the natural convection heat transfer from a vertical open-ended cylindrical annulus with diameter ratio of 1.63 and aspect ratio of 18:1 have been investigated experimentally. Within the range of present conditions, and with the possible exclusion of the highest eccentricities, it was found that the flow was thermally fully developed in a considerable section of the apparatus, as indicated by the linear variation of wall temperature with height. This made it possible to estimate the mass flow rate from the wall temperature gradient in the mid-section of the annulus, and use it to calculate the bulk Reynolds number, which was found to be weakly sensitive to eccentricity for a constant wall heat flux and to increase with increased wall heat flux. With the exception of the very low eccentricity range in which it was insensitive to eccentricity, the overall heat transfer rate diminished monotonically with increasing eccentricity. Plots of the local azimuthal variation of the Nusselt number showed that, at low eccentricities, the heat transfer rate increased near the wider gap but decreased near the narrower gap. The average Nusselt number was found to decrease measurably with increasing eccentricity and to increase slightly with increasing heat flux within the examined range. In contrast, the Grashof number was found to be much more sensitive to changes in heat flux and only had a weak dependence on eccentricity.

2020 ◽  
pp. 334-334
Author(s):  
Hadi Pourziaei Araban ◽  
Javad Alinejad ◽  
Ganji Domiri

The innovation of this paper is to simulate two-phase nanofluid natural convection inside the transformable enclosure to control the heat transfer rate under different heat flux. Heat transfer of a two-phase CuO-water nanofluid in an enclosure under different heat flux has many industrial applications including energy storage systems, thermal control of electronic devices and cooling of radioactive waste containers. The Lattice Boltzmann Method based on the D2Q9 method has been utilized for modeling velocity and temperature fields. Streamlines, isotherms and nanoparticle volume fraction, have been investigated for control the heat transfer rate for several cases. The purpose of this feasibility study is to achieve uniform temperature profiles and Tmax < 50?C under different heat flux. Natural convection heat transfer in the rectangular and parallelogram enclosures with positive and negative angular adiabatic walls were simulated. The average wall temperature under heat flux boundary condition has been studied to predict optimal levels of effective factors to control the maximum wall temperature. The results illustrated parallelogram enclosures with positive angle of case 1 and case 3 and 4 with rectangular enclosures were best cases for considering physical conditions. Average of temperature for these cases were 37.9, 29.7 and 38.2, respectively.


Author(s):  
Ridha Jmai ◽  
Brahim Ben Beya ◽  
Taieb Lili

Natural convection in a rectangular cavity with aspect ratio (Ax), partially heated and filled with a nanofluid (Cu-Water) has been studied numerically. Two heat sources with length (B) are placed on the opposite vertical walls; the remainder of the walls is maintained adiabatic while the horizontal walls are brought to a cold temperature. The equations governing the flow are solved using a finite volume home code using a multigrid technique. Among the parameters governing the flow, a detailed study on the effects of the aspect ratio (Ax) and the length of the source (B) on flow and heat transfer rate is given. The results are shown in terms of streamlines and isotherms. It was found that the transfer of heat significantly increases with the aspect ratio (Ax) and the length of the source (B). A correlation expressing the Nusselt number as a function of (Ax) and d is established.


2020 ◽  
Vol 14 (2) ◽  
pp. 98-102
Author(s):  
Houssem Laidoudi

AbstractNumerical investigation is accomplished to study the roles of governing parameters of natural convection on the fluid motion and heat transfer rate of four heated circular cylinders placed inside a circular enclosure of cold surface. The cylinders are positioned in across arrangement. The representative results are obtained within the ranges of initial conditions as: Prandtl number (Pr = 7.1 to 1000) and Rayleigh number (Ra = 103 to 105). The average Nusselt number of each inner cylinder is computed. The effects of thermal buoyancy strength on the fluid motion and temperature are also illustrated. It was found that the heat transfer rate of cylinders depends significantly on the position inside the enclosure. Moreover, the role of Prandtl number on flow and thermal patterns is negligible. The values of Nusselt number are also given, which can be useful for some engineering applications.


2013 ◽  
Vol 135 (7) ◽  
Author(s):  
L. Maudou ◽  
G. H. Choueiri ◽  
S. Tavoularis

The effect of eccentricity on heat transfer in upward flow in a vertical, open-ended, annular channel with a diameter ratio of 0.61, an aspect ratio of 18:1, and both internal surfaces heated uniformly has been investigated experimentally. Results have been reported for eccentricities ranging from the concentric case to the near-contact case and three inlet bulk Reynolds numbers, equal approximately to 1500, 2800, and 5700. This work complements our recently reported experimental results on natural convection in the same facility. The present results are deemed to be largely in the mixed convection regime with some overlap with the forced convection regime and likely to include cases with laminar, transitional, and turbulent flows in at least a part of the test section. Small eccentricity had an essentially negligible effect on the overall heat transfer rate, but high eccentricity reduced the average heat transfer rate by up to 60%. High eccentricity also resulted in wall temperatures in the narrow gap region that were much higher than those in the open channel. The concentric-case Nusselt number was higher than the Dittus–Boelter prediction, whereas the highly eccentric-case Nusselt number was significantly lower than that.


1965 ◽  
Vol 32 (3) ◽  
pp. 684-689 ◽  
Author(s):  
E. M. Sparrow ◽  
J. B. Starr

Consideration is given to the fully developed heat-transfer characteristics of laminar flows in converging and diverging plane-walled passages. The analysis is carried out for the two fundamental thermal boundary conditions of prescribed wall heat flux and prescribed wall temperature. As a prelude to the heat-transfer analysis, a new solution for the velocity distribution is derived on the basis of a linearized momentum equation. The Nusselt number for flow in tapered passages is found to depend on the Reynolds number; this is in contrast to the situation for passages of longitudinally unchanging cross section wherein the Nusselt number is independent of the Reynolds number. In general, the Nusselt number for flow in a plane-walled diverging passage falls below that for the parallel-plate channel, while the Nusselt number for a converging flow is usually higher than that for a parallel-plate channel. Moreover, the fully developed Nusselt numbers for prescribed wall heat flux exceed those for prescribed wall temperature.


1980 ◽  
Vol 102 (3) ◽  
pp. 402-407 ◽  
Author(s):  
E. M. Sparrow ◽  
M. Faghri

An analysis is made of the interactive heat transfer problem involving forced convection flow in a vertical pipe and natural convection boundary layer flow external to the pipe. Both flows are laminar. Solutions of the conservation equations for mass, momentum, and energy were obtained numerically by an iterative scheme which deals successively with the internal and external flows. Remarkably rapid convergence was achieved by adopting a procedure whereby information is transferred between the two flows via heat transfer coefficients rather than via the wall or bulk temperatures or the heat flux. Results are presented for the axial distributions of the internal and external Nusselt numbers, of the wall temperature, and of the bulk temperature of the internal flow—all as a function of three parameters. It was found that at any (dimensionless) axial station, the pipe Nusselt number is insensitive to the parameters and is bounded between the values for uniform wall temperature and uniform wall heat flux. On the other hand, the external natural convection Nusselt number is highly sensitive to the parameters and departs substantially from the standard uniform wall temperature results.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
M. Mohammadpour-Ghadikolaie ◽  
M. Saffar-Avval ◽  
Z. Mansoori ◽  
N. Alvandifar ◽  
N. Rahmati

Laminar forced convection heat transfer from a constant temperature tube wrapped fully or partially by a metal porous layer and subjected to a uniform air cross-flow is studied numerically. The main aim of this study is to consider the thermal performance of some innovative arrangements in which only certain parts of the tube are covered by metal foam. The combination of Navier–Stokes and Darcy–Brinkman–Forchheimer equations is applied to evaluate the flow field. Governing equations are solved using the finite volume SIMPLEC algorithm and the effects of key parameters such as Reynolds number, metal foam thermophysical properties, and porous layer thickness on the Nusselt number are investigated. The results show that using a tube which is fully wrapped by an external porous layer with high thermal conductivity, high Darcy number, and low drag coefficient, can provide a high heat transfer rate in the high Reynolds number laminar flow, increasing the Nusselt number almost as high as 16 times compared to a bare tube. The most important result of thisstudy is that by using some novel arrangements in which the tube is partially covered by the foam layer, the heat transfer rate can be increased at least 20% in comparison to the fully wrapped tube, while the weight and material usage can be considerably reduced.


2019 ◽  
Vol 20 (1) ◽  
pp. 229-244
Author(s):  
Mehdi Ahmadi ◽  
Seyed Ali Agha Mirjalily ◽  
Seyed Amir Abbas Oloomi

ABSTRACT: This study is conducted to investigate turbulent natural convection flow in an enclosure with thermal sources using the low-Reynolds number (LRN) k-? model. This enclosure has a cold source with temperature Tc and a hot source with temperature Th as thermal sources, other walls of the enclosure are adiabatic. The aim of this study is to predict the effect of change in Rayleigh number, repositioning of cold and hot sources, and thermal sources aspect ratio on the flow field, temperature, and rate of heat transfer. To achieve this aim, the equations of continuity, momentum, energy, turbulent kinetic energy, and kinetic energy dissipation are employed in the case of 2D turbulence with constant thermo-physical properties except the density in the buoyancy term (Boussinesq approximation). To numerically solve these equations, the finite volume method and SIMPLE algorithm are used. According to the modeling results, the most optimal temperature distribution in the enclosure is seen when the hot source is below the cold source. With decreasing distance between hot and cold sources, heat transfer rate increases. The maximal heat transfer rate is derived via study of the heating sources aspect ratio. In constant positions of cold and hot sources on a wall, the heat transfer rate increases with increasing Rayleigh number (Ra=109-1011). ABSTAK: Kajian ini dijalankan bagi mengkaji perubahan semula jadi aliran perolakan dalam tempat tertutup dengan sumber haba menggunakan model k-? nombor Reynolds-rendah (LRN). Bekas tertutup ini mempunyai dua sumber haba iaitu sumber sejuk dengan suhu Tc dan sumber panas dengan suhu Th, manakala dinding lain bekas ini adalah adiabatik. Tujuan kajian ini adalah bagi mengesan perubahan nombor Rayleigh, mengubah sumber sejuk dan panas dan nisbah sumber haba kepada kawasan aliran, suhu dan halaju perubahan haba. Bagi mencapai tujuan tersebut, persamaan sambungan, momentum, tenaga, tenaga kinetik perolakan, dan pengurangan tenaga kinetik telah dilaksanakan dalam kes perolakan 2D dengan sifat fizikal-haba berterusan (malar) kecuali isipadu terma keapungan (anggaran Boussinesq). Bagi menyelesaikan persamaan ini secara berangka, kaedah isipadu terhad dan algorithma MUDAH telah digunakan. Berdasarkan keputusan model, suhu distribusi optimal dalam bekas tertutup dilihat apabila sumber panas adalah kurang daripada sumber sejuk. Dengan pengurangan jarak antara sumber panas dan sejuk, kadar pertukaran haba meningkat. Kadar pertukaran haba maksima telah diperoleh melalui kajian nisbah  aspek sumber pemanasan. Kadar pertukaran haba bertambah dengan bertambahnya nombor Rayleigh  (Ra=109-1011), pada posisi tetap sumber sejuk dan panas pada dinding bekas.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
Ashok Kumar ◽  
P. Bera

A comprehensive numerical investigation on the natural convection in a hydrodynamically anisotropic porous enclosure is presented. The flow is due to nonuniformly heated bottom wall and maintenance of constant temperature at cold vertical walls along with adiabatic top wall. Brinkman-extended non-Darcy model, including material derivative, is considered. The principal direction of the permeability tensor has been taken oblique to the gravity vector. The spectral element method has been adopted to solve numerically the governing conservative equations of mass, momentum, and energy by using a stream-function vorticity formulation. Special attention is given to understand the effect of anisotropic parameters on the heat transfer rate as well as flow configurations. The numerical experiments show that in the case of isotropic porous enclosure, the maximum rates of bottom as well as side heat transfers (Nub and Nus) take place at the aspect ratio, A, of the enclosure equal to 1, which is, in general, not true in the case of anisotropic porous enclosures. The flow in the enclosure is governed by two different types of convective cells: rotating (i) clockwise and (ii) anticlockwise. Based on the value of media permeability as well as orientation angle, in the anisotropic case, one of the cells will dominate the other. In contrast to isotropic porous media, enhancement of flow convection in the anisotropic porous enclosure does not mean increasing the side heat transfer rate always. Furthermore, the results show that anisotropy causes significant changes in the bottom as well as side average Nusselt numbers. In particular, the present analysis shows that permeability orientation angle has a significant effect on the flow dynamics and temperature profile and consequently on the heat transfer rates.


Author(s):  
Gustavo Gutierrez ◽  
Ezequiel Medici

The interaction between magnetic fields and convection is an interesting phenomenon because of its many important engineering applications. Due to natural convection motion the electric conductive fluid in a magnetic field experiences a Lorenz force and its effect is usually to reduce the flow velocities. A magnetic field can be used to control the flow field and increase or reduce the heat transfer rate. In this paper, the effect of a magnetic field in a natural convection flow of an electrically conducting fluid in a rectangular cavity is studied numerically. The two side walls of the cavity are maintained at two different constant temperatures while the upper wall and the lower wall are completely insulated. The coupling of the Navier-Stokes equations with the Maxwell equations is discussed with the assumptions and main simplifications assumed in typical problems of magnetohydrodynamics. The nonlinear Lorenz force generates a rich variety of flow patterns depending on the values of the Grashof and Hartmann numbers. Numerical simulations are carried out for different Grashof and Hartmann numbers. The effect of the magnetic field on the Nusselt number is discussed as well as how convection can be suppressed for certain values of the Hartmann number under appropriate direction of the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document