Free-Stream Effects on the Cooling Performance of Cylindrical and Fan-Shaped Cooling Holes

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Christian Saumweber ◽  
Achmed Schulz

From literature and our own studies, it is known that the effects of hot gas cross-flow and, in particular, the turbulence of the hot gas flow highly influence the spreading of the coolant in the near hole vicinity. Moreover, the velocity of the hot gas flow expressed by a hot gas Mach number obviously plays a much more important role in the case of diffuser holes than with simple cylindrical holes. To realize a certain blowing rate, a higher pressure ratio needs to be established in the case of higher Mach numbers. This in turn may strongly affect the diffusion process in the expanded portion of a fan-shaped cooling hole. The said effects will be discussed in great detail. The effects of free-stream Mach number and free-stream turbulence, including turbulence intensity, integral length scale, and periodic unsteady wake flow will be considered. The comparative study is performed by means of discharge coefficients and by local and laterally averaged adiabatic film cooling effectiveness and heat transfer coefficients. Both cooling holes have a length-to-diameter ratio of 6 and an inclination angle of 30 deg. The fan-shaped hole has an expansion angle of 14 deg. The effect of the coolant cross-flow at the hole entrance is not considered in this study, i.e., plenum conditions exist at the hole entrance.

Author(s):  
Christian Saumweber ◽  
Achmed Schulz

From literature and our own studies it is known that the effects of hot gas cross-flow and in particular the turbulence of the hot gas flow highly influence the spreading of the coolant in the near hole vicinity. Moreover, the velocity of the hot gas flow expressed by a hot gas Mach number obviously plays a much more important role in case of diffuser holes than with simple cylindrical holes. To realize a certain blowing rate, a higher pressure ratio needs to be established in case of higher Mach numbers. This in turn may strongly affect the diffusion process in the expanded portion of a fan-shaped cooling hole. The said effects will be discussed in great detail. The effects of free-stream Mach number and free-stream turbulence, including turbulence intensity, integral length scale, and periodic unsteady wake flow will be considered. The comparative study is performed by means of discharge coefficients and by local and laterally averaged adiabatic film cooling effectiveness and heat transfer coefficients. Both cooling holes have a length-to-diameter ratio of 6 and an inclination angle of 30°. The fan-shaped hole has an expansion angle of 14°. The effect of the coolant cross-flow at the hole entrance is not considered in this study, i.e. plenum conditions exist at the hole entrance.


Author(s):  
S. Wittig ◽  
A. Schulz ◽  
K. Dullenkopf ◽  
J. Fairbank

Heat transfer measurements under steady, quasi-steady and unsteady flow conditions are discussed. In continuing measurements on the influence of a plane steady wake flow as well as on the effects of grid-produced free-stream turbulence, the present paper describes the effects of the superposition of the free-stream turbulence with the wake flow. Of special interest is a comparison of the wake produced by a leading airfoil with that of a cylindrical bar in cross flow. The similarity of the wakes as far as macrostructure of the turbulence and velocity is concerned is documented using LDV and heat transfer measurements. In extending the modeling concept, a rotating wake generator is employed simulating the wake of a blade with cylindrical bars in cross flow. The comparison of the theoretical and experimental results is presented.


Author(s):  
V. I. Terekhov ◽  
N. I. Yarygina

In the present paper, a comparative analysis of the influence of free-stream turbulence on the separated flows past obstacles is given. As the obstacles, a downward-facing step, a flat rib installed at different orientations to the free-stream direction, a system of several ribs, and a cross-flow trench with vertical or inclined walls are considered. The experimental results obtained in the present study are compared to data previously reported by other workers. The structure of the separated flow at an enhanced level of free-stream turbulence is compared to the flow under low-turbulence conditions in terms of the characteristic length of the separation zone, mixing-layer parameters, and pressure distributions. The emphasis is on the thermal characteristics, including the profiles of temperature across the shear layer, the distributions of temperature over the streamlined surface, and the local and mean heat-transfer coefficients. It is shown that the effect of enhanced free-stream turbulence on the separated flow is much more pronounced than that on the boundary-layer flow over a flat surface. For separated flow, this effect is manifested more clearly behind rib than behind step. The largest heat-transfer intensification ratios due to external turbulence were found in the cross-flow trench and in the system of ribs.


Author(s):  
Michael Gritsch ◽  
Christian Saumweber ◽  
Achmed Schulz ◽  
Sigmar Wittig ◽  
Edwin Sharp

Discharge coefficients of three film-cooling hole geometries are presented over a wide range of engine like conditions. The hole geometries comprise a cylindrical hole and two holes with a diffuser shaped exit portion (a fanshaped and a laidback fanshaped hole). For all three hole geometries the hole axis was inclined 30° with respect to the direction of the external (hot gas) flow. The flow conditions considered were the hot gas crossflow Mach number (up to 0.6), the coolant crossflow Mach number (up to 0.6) and the pressure ratio across the hole (up to 2). The effect of internal crossflow approach direction, perpendicular or parallel to the main flow direction, is particularly addressed in the present study. Comparison is made of the results for a parallel and perpendicular orientation, showing that the coolant crossflow orientation has a strong impact on the discharge behavior of the different hole geometries. The discharge coefficients were found to strongly depend on both hole geometry and crossflow conditions. Furthermore, the effects of internal and external crossflow on the discharge coefficients were described by means of correlations used to derive a predicting scheme for discharge coefficients. A comparison between predictions and measurements reveals the capability of the method proposed.


1999 ◽  
Vol 122 (1) ◽  
pp. 146-152 ◽  
Author(s):  
M. Gritsch ◽  
C. Saumweber ◽  
A. Schulz ◽  
S. Wittig ◽  
E. Sharp

Discharge coefficients of three film-cooling hole geometries are presented over a wide range of engine like conditions. The hole geometries comprise a cylindrical hole and two holes with a diffuser-shaped exit portion (a fanshaped and a laidback fanshaped hole). For all three hole geometries the hole axis was inclined 30 deg with respect to the direction of the external (hot gas) flow. The flow conditions considered were the hot gas crossflow Mach number (up to 0.6), the coolant crossflow Mach number (up to 0.6) and the pressure ratio across the hole (up to 2). The effect of internal crossflow approach direction, perpendicular or parallel to the main flow direction, is particularly addressed in the present study. Comparison is made of the results for a parallel and perpendicular orientation, showing that the coolant crossflow orientation has a strong impact on the discharge behavior of the different hole geometries. The discharge coefficients were found to strongly depend on both hole geometry and crossflow conditions. Furthermore, the effects of internal and external crossflow on the discharge coefficients were described by means of correlations used to derive a predicting scheme for discharge coefficients. A comparison between predictions and measurements reveals the capability of the method proposed. [S0889-504X(00)01601-9]


1983 ◽  
Vol 34 (1) ◽  
pp. 24-45 ◽  
Author(s):  
X.J. Xia ◽  
P.W. Bearman

SummaryThe effect of base slant on the base pressure distribution, drag coefficient and vortex shedding characteristics of a model consisting of an axisymmetric main body with an ellipsoidal nose have been investigated for three fineness ratios; 3, 6 and 9. A sudden change in the drag coefficient and separated flow pattern is observed at a critical slant angle (for constant incidence) or at a critical angle of incidence (for a constant base slant angle). The tests confirm that the value of the maximum drag coefficient is extremely sensitive to angle of incidence. Measurements of the frequency of vortex shedding are presented and the structure of the wake is investigated using smoke visualization and hot-wire correlation measurements. The wake is found to be far less stable than that from a two-dimensional bluff body and the vortex structures are sometimes in-phase and sometimes out of phase across the wake. The effect of free-stream turbulence on this family of body shapes is observed to be different to that on three-dimensional blunt-faced bluff bodies. Free-stream turbulence is found to have a minimal effect on base pressure for slant angles giving a recirculating type near wake flow. When longitudinal vortices are present the addition of free-stream turbulence slightly reduces the magnitude of the peak suctions recorded on the base but has little effect on base drag.


Author(s):  
P. M. Ligrani ◽  
C. Saumweber ◽  
A. Schulz ◽  
S. Wittig

Interactions between shock waves and film cooling are described as they affect magnitudes of local and spanwise-averaged adiabatic film cooling effectiveness distributions. A row of three cylindrical holes is employed. Spanwise spacing of holes is 4 diameters, and inclination angle is 30 degrees. Freestream Mach numbers of 0.8 and 1.10–1.12 are used, with coolant to freestream density ratios of 1.5–1.6. Shadowgraph images show different shock structures as the blowing ratio is changed, and as the condition employed for injection of film into the cooling holes is altered. Investigated are film plenum conditions, as well as perpendicular film injection cross-flow Mach numbers of 0.15, 0.3, and 0.6. Dramatic changes to local and spanwise-averaged adiabatic film effectiveness distributions are then observed as different shock wave structures develop in the immediate vicinity of the film-cooling holes. Variations are especially evident as the data obtained with a supersonic Mach number are compared to the data obtained with a freestream Mach number of 0.8. Local and spanwise-averaged effectiveness magnitudes are generally higher when shock waves are present when a film plenum condition (with zero cross-flow Mach number) is utilized. Effectiveness values measured with a supersonic approaching freestream and shock waves then decrease as the injection cross-flow Mach number increases. Such changes are due to altered flow separation regions in film holes, different injection velocity distributions at hole exits, and alterations of static pressures at film hole exits produced by different types of shock wave events.


Author(s):  
K. Dullenkopf ◽  
R. E. Mayle

The effect of free-stream turbulence and moving wakes on augmenting heat transfer in accelerating laminar boundary layers is considered. First, the the effect of free-stream turbulence is re-examined in terms of a Nusselt number and turbulence parameter which correctly account for the free-stream acceleration and a correlation for both cylinders in cross flow and airfoils with regions of constant acceleration is obtained. This correlation is then used in a simple quasi-steady model to predict the effect of periodically passing wakes on airfoil laminar heat transfer. A comparison of the predictions with measurements shows good agreement.


Author(s):  
Andrew P. S. Wheeler ◽  
Richard D. Sandberg

In this paper we use direct numerical simulation to investigate the unsteady flow over a model turbine blade-tip at engine scale Reynolds and Mach numbers. The DNS is performed with a new in-house multi-block structured compressible Navier-Stokes solver purposely developed for exploiting high-performance computing systems. The particular case of a transonic tip flow is studied since previous work has suggested compressibility has an important influence on the turbulent nature of the separation bubble at the inlet to the gap and subsequent flow reattachment. The effects of free-stream turbulence, cross-flow and pressure-side boundary-layer on the tip flow aerodynamics and heat transfer are investigated. For ‘clean’ in-flow cases we find that even at engine scale Reynolds numbers the tip flow is intermittent in nature (neither laminar nor fully turbulent). The breakdown to turbulence occurs through the development of spanwise modes with wavelengths around 25% of the gap height. Cross-flows of 25% of the streamwise gap exit velocity are found to increase the stability of the tip flow, and to significantly reduce the turbulence production in the separation bubble. This is predicted through in-house linear stability analysis, and confirmed by the DNS. For the case when the inlet flow has free-stream turbulence, viscous dissipation and the rapid acceleration of the flow at the inlet to the tip-gap causes significant distortion of the vorticity field and reductions of turbulence intensity as the flow enters the tip gap. This means that only very high turbulence levels at the inlet to the computational domain significantly affect the tip heat transfer. The DNS results are compared with RANS predictions using the Spalart-Allmaras and k–ω SST turbulence models. The RANS and DNS predictions give similar qualitative features for the tip flow, but the size and shape of the inlet separation bubble and shock positions differ noticeably. The RANS predictions are particularly insensitive to free-stream turbulence.


1997 ◽  
Vol 119 (3) ◽  
pp. 420-426 ◽  
Author(s):  
R. J. Volino ◽  
T. W. Simon

Measurements from heated boundary layers along a concave-curved test wall subject to high (initially 8 percent) free-stream turbulence intensity and strong (K = (ν/U∞2) dU∞/dx) as high as 9 × 10−6) acceleration are presented and discussed. Conditions for the experiments were chosen to roughly simulate those present on the downstream half of the pressure side of a gas turbine airfoil. Mean velocity and temperature profiles as well as skin friction and heat transfer coefficients are presented. The transition zone is of extended length in spite of the high free-stream turbulence level. Transitional values of skin friction coefficients and Stanton numbers drop below flat-plate, low-free-stream-turbulence, turbulent flow correlations, but remain well above laminar flow values. The mean velocity and temperature profiles exhibit clear changes in shape as the flow passes through transition. To the authors’ knowledge, this is the first detailed documentation of a high-free-stream-turbulence boundary layer flow in such a strong acceleration field.


Sign in / Sign up

Export Citation Format

Share Document