Low Pressure Turbine Secondary Vortices: Reynolds Lapse

2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Matthias Kuerner ◽  
Georg A. Reichstein ◽  
Daniel Schrack ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
...  

A two-stage turbine is tested in a cooperation between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines GmbH (MTU). The experimental results taken in the Altitude Test Facility (ATF) are used to assess the impact of cavity flow and leakage on vortex structures. The analysis focuses on a range of small Reynolds numbers, from as low as 35,000 up to 88,000. The five hole probe area traverse data is compared to steady multistage CFD predictions behind the second vane. The numerical model compares computations without and with cavities modeled. The simulation with cavities is superior to the approach without cavities. The vortex induced blockage is found to be inversely proportional to the Reynolds number. The circulation of the vortices is dependent on the Reynolds number showing a reversing trend to the smallest Reynolds numbers. The steady numerical model as of yet is unsuitable to predict these trends. A first unsteady simulation suggests major improvements.

Author(s):  
Matthias Kuerner ◽  
Georg A. Reichstein ◽  
Daniel Schrack ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
...  

A two-stage turbine is tested in a cooperation between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines GmbH (MTU). The experimental results taken in the Altitude Test Facility (ATF) are used to assess the impact of cavity flow and leakage on vortex structures. The analysis focuses on a range of small Reynolds numbers, from as low as 35,000 up to 88,000. The five hole probe area traverse data is compared to steady multistage CFD predictions behind the second vane. The numerical model compares computations without and with cavities modeled. The simulation with cavities is superior to the approach without cavities. The vortex induced blockage is found to be inversely proportional to Reynolds number. The circulation of the vortices is dependent on the Reynolds number showing a reversing trend to smallest Reynolds numbers. The steady numerical model as of yet is unsuitable to predict these trends. A first unsteady simulation suggests major improvements.


Author(s):  
Georg A. Reichstein ◽  
Martin G. Rose ◽  
Stephan Staudacher ◽  
Karl Engel

A two-stage turbine is tested in cooperation between the Institute of Aircraft Propulsion Systems (ILA) and MTU Aero Engines GmbH (MTU). The experimental results taken in the Altitude Test Facility (ATF) are used to assess the quality of the numerical simulation with regard to cavity size and seal gap height. The analysis focuses on a range of small Reynolds numbers, from as low as 35,000 up to 88,000. Circumferentially averaged five-hole-probe area traverse data is compared to steady multistage CFD predictions. Previous analysis showed the simulation with cavities to be superior to the approach without cavities. For most of the Reynolds lapse numerically changing the cavity volume is of no significance for the prediction of the main flow. Only at the smallest Reynolds number these trends diverge. Numerically changing the seal gap height forces the prediction closer to the experimental data on global values. At the smallest Reynolds number the improvements from changing the gap height cease to exist.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Jerrit Dähnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
Kenneth Van Treuren ◽  
Tyler Pharris ◽  
Olivia Hirst

The low-pressure turbine has become more important in the last few decades because of the increased emphasis on higher overall pressure and bypass ratios. The desire is to increase blade loading to reduce blade counts and stages in the low-pressure turbine of a gas turbine engine. Increased turbine inlet temperatures for newer cycles results in higher temperatures in the low-pressure turbine, especially the latter stages, where cooling technologies are not used. These higher temperatures lead to higher work from the turbine and this, combined with the high loadings, can lead to flow separation. Separation is more likely in engines operating at high altitudes and reduced throttle setting. At the high Reynolds numbers found at takeoff, the flow over a low-pressure turbine blade tends to stay attached. At lower blade Reynolds numbers (25,000 to 200,000), found during cruise at high altitudes, the flow on the suction surface of the low-pressure turbine blades is inclined to separate. This paper is a study on the flow characteristics of the L1A turbine blade at three low Reynolds numbers (60,000, 108,000, and 165,000) and 15 turbulence intensities (1.89% to 19.87%) in a steady flow cascade wind tunnel. With this data, it is possible to examine the impact of Reynolds number and turbulence intensity on the location of the initiation of flow separation, the flow separation zone, and the reattachment location. Quantifying the change in separated flow as a result of varying Reynolds numbers and turbulence intensities will help to characterize the low momentum flow environments in which the low-pressure turbine must operate and how this might impact the operation of the engine. Based on the data presented, it is possible to predict the location and size of the separation as a function of both the Reynolds number and upstream freestream turbulence intensity (FSTI). Being able to predict this flow behavior can lead to more effective blade designs using either passive or active flow control to reduce or eliminate flow separation.


Author(s):  
L. Simonassi ◽  
M. Zenz ◽  
P. Bruckner ◽  
S. Pramstrahler ◽  
F. Heitmeir ◽  
...  

Abstract The design of modern aero engines enhances the interaction between components and facilitates the propagation of circumferential distortions of total pressure and temperature. As a consequence, the inlet conditions of a real turbine have significant spatial non-uniformities, which have direct consequences on both its aerodynamic and vibration characteristics. This work presents the results of an experimental study on the effects of different inlet total pressure distortion-stator clocking positions on the propagation of total pressure inflow disturbances through a low pressure turbine stage, with a particular focus on both the aerodynamic and aeroelastic performance. Measurements at a stable engine relevant operating condition and during transient operation were carried out in a one and a half stage subsonic turbine test facility at the Institute of Thermal Turbomachinery and Machine Dynamics at Graz University of Technology. A localised total pressure distortion was generated upstream of the stage in three different azimuthal positions relative to the stator vanes. The locations were chosen in order to align the distortion directly with a vane leading edge, suction side and pressure side. Additionally, a setup with clean inflow was used as reference. Steady and unsteady aerodynamic measurements were taken downstream of the investigated stage by means of a five-hole-probe (5HP) and a fast response aerodynamic pressure probe (FRAPP) respectively. Strain gauges applied on different blades were used in combination with a telemetry system to acquire the rotor vibration data. The aerodynamic interactions between the stator and rotor rows and the circumferential perturbation were studied through the identification of the main structures constituting the flow field. This showed that the steady and unsteady alterations created by the distortion in the flow field lead to modifications of the rotor vibration characteristics. Moreover, the importance of the impact that the pressure distortion azimuthal position has on the LPT stage aerodynamics and vibrations was highlighted.


Proceedings ◽  
2020 ◽  
Vol 49 (1) ◽  
pp. 19
Author(s):  
Ola Elfmark ◽  
Robert Reid ◽  
Lars Morten Bardal

The purpose of this study was to investigate the impact of blockage effect and Reynolds Number dependency by comparing measurements of an alpine skier in standardized positions between two wind tunnels with varying blockage ratios and speed ranges. The results indicated significant blockage effects which need to be corrected for accurate comparison between tunnels, or for generalization to performance in the field. Using an optimized blockage constant, Maskell’s blockage correction method improved the mean absolute error between the two wind tunnels from 7.7% to 2.2%. At lower Reynolds Numbers (<8 × 105, or approximately 25 m/s in this case), skier drag changed significantly with Reynolds Number, indicating the importance of testing at competition specific wind speeds. However, at Reynolds Numbers above 8 × 105, skier drag remained relatively constant for the tested positions. This may be advantageous when testing athletes from high speed sports since testing at slightly lower speeds may not only be safer, but may also allow the athlete to reliably maintain difficult positions during measurements.


Author(s):  
Jerrit Da¨hnert ◽  
Christoph Lyko ◽  
Dieter Peitsch

Based on detailed experimental work conducted at a low speed test facility, this paper describes the transition process in the presence of a separation bubble with low Reynolds number, low free-stream turbulence, and steady main flow conditions. A pressure distribution has been created on a long flat plate by means of a contoured wall opposite of the plate, matching the suction side of a modern low-pressure turbine aerofoil. The main flow conditions for four Reynolds numbers, based on suction surface length and nominal exit velocity, were varied from 80,000 to 300,000, which covers the typical range of flight conditions. Velocity profiles and the overall flow field were acquired in the boundary layer at several streamwise locations using hot-wire anemometry. The data given is in the form of contours for velocity, turbulence intensity, and turbulent intermittency. The results highlight the effects of Reynolds number, the mechanisms of separation, transition, and reattachment, which feature laminar separation-long bubble and laminar separation-short bubble modes. For each Reynolds number, the onset of transition, the transition length, and the general characteristics of separated flow are determined. These findings are compared to the measurement results found in the literature. Furthermore, the experimental data is compared with two categories of correlation functions also given in the open literature: (1) correlations predicting the onset of transition and (2) correlations predicting the mode of separated flow transition. Moreover, it is shown that the type of instability involved corresponds to the inviscid Kelvin-Helmholtz instability mode at a dominant frequency that is in agreement with the typical ranges occurring in published studies of separated and free-shear layers.


Author(s):  
Gorazd Medic ◽  
Om Sharma

Flow over three low-pressure turbine airfoils presented in [1] is analyzed for a range of Reynolds numbers (30,000 to 150,000) by means of large-eddy simulation. Baseline computational grid for these 2D linear cascade configurations consisted of 35 millions cells, and additional finer grids of 70 millions cells were used for grid sensitivity studies. For these low Reynolds number flows, this represents a quasi-DNS resolution which minimizes the role of the subgrid-scale model — however, WALE subgrid-scale model [7] was still employed. The configurations were analyzed for low free-stream turbulence intensity, as well as for 4% turbulence intensity at free-stream. Laminar separation exists on the suction side, and, depending on the Reynolds number, the flow at the outer edge of the separation either transitions, and the separation closes before the trailing edge, or not. Detailed comparisons to measurements are presented for computed surface pressure and total pressure losses over the range of Reynolds numbers for all three airfoils; these show that LES analyses are able to capture the main trends across all three geometries.


Sign in / Sign up

Export Citation Format

Share Document