The Effect of Helix Angle Variation on Milling Stability

Author(s):  
Zoltan Dombovari ◽  
Gabor Stepan

Helical milling tools of nonuniform helix angles are widely used in manufacturing industry. While the milling tools with these special cutting edges are already available in the market, their cutting dynamics has not been fully explored. Also, there have been several attempts to introduce complex harmonically varied helix tools, but the manufacturing of harmonic edges is extremely difficult, and their effect on cutting dynamics is not clear either. In this study, a general mechanical model is introduced to predict the linear stability of these special cutters with optional continuous variation of the helix angle. It is shown that these milling tools cause distribution in regeneration. The corresponding time-periodic distributed delay differential equations are investigated by semi-discretization. This work points out how the nonuniform and harmonically varied helix cutters behave in case of high and low cutting speed applications.

Author(s):  
Zoltan Dombovari ◽  
Gabor Stepan

The linearly varied helix tool is widely used in manufacturing industry and milling tools are available in the market with these special cutting edges. There were several attempts to introduce complex harmonically varied helix tools, but the manufacturing of sinusoid edges is extremely difficult and its effect on cutting dynamics is not clear yet. In this study a mechanical model is introduced to predict the linear stability of these special cutters. It is shown that these milling tools cause distribution in regeneration and the corresponding time periodic distributed delay differential equations are investigated by semi-discretization. This work points out how the harmonically varied helix cutters behave in case of high and low cutting speed applications.


Symmetry ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 523 ◽  
Author(s):  
Mostafa Bachar

The purpose of this paper is to study the nonlinear distributed delay differential equations with impulses effects in the vectorial regulated Banach spaces R ( [ − r , 0 ] , R n ) . The existence of the periodic solution of impulsive delay differential equations is obtained by using the Schäffer fixed point theorem in regulated space R ( [ − r , 0 ] , R n ) .


Materials ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2174 ◽  
Author(s):  
Zhaolong Zhu ◽  
Pingxiang Cao ◽  
Xiaolei Guo ◽  
Xiaodong (Alice) Wang ◽  
Fan Zhang ◽  
...  

In order to better provide a theoretical basis for the machining of luxury vinyl tiles, a helical milling experiment was conducted by using diamond cutting tools, and special attention was given to the trends of cutting force and surface roughness in respect to tool geometry and cutting parameters. The results showed that the resultant force was negatively correlated to the helix angle and cutting speed, but positively correlated with the cutting depth. Then, that the surface roughness increased with a decrease of the helix angle and an increase of cutting depth, while as cutting speed raised, the surface roughness first declined and then increased. Thirdly, the cutting depth was shown to have the greatest influence on both cutting force and surface roughness, followed by helix angle and cutting speed. Fourth, the contribution of cutting depth only was significant to cutting force, while both the helix angle and cutting speed had insignificant influence on the cutting force and surface roughness. Finally, the optimal cutting conditions were proposed for industrial production, in which the helix angle, cutting speed and cutting depth were 70°, 2200 m/min and 0.5 mm, respectively.


Author(s):  
Zoltan Dombovari ◽  
Daniel Bachrathy ◽  
Gabor Stepan

Abstract Tool geometry directly influences the dynamic performance of milling operations. Both surface properties and stability behavior are significantly influenced by the regeneration effect. The regeneration phenomenon is modelled by delay differential equations with delays originated from the time passed between consecutive flute passes. This work presents the implementation study of a constrained general optimization scheme for cutting edges of cylindrical milling cutters based on functional minimization principle. Mathematically, this leads to the determination of the corresponding weight function of a distributed delay differential equation. The presented semi-analytical methodology is based on the general milling model implemented in the semidiscretization framework.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 734
Author(s):  
Pablo Fernández-Lucio ◽  
Octavio Pereira Neto ◽  
Gaizka Gómez-Escudero ◽  
Francisco Javier Amigo Fuertes ◽  
Asier Fernández Valdivielso ◽  
...  

Productivity in the manufacture of aircrafts components, especially engine components, must increase along with more sustainable conditions. Regarding machining, a solution is proposed to increase the cutting speed, but engines are made with very difficult-to-cut alloys. In this work, a comparison between two cutting tool materials, namely (a) cemented carbide and (b) SiAlON ceramics, for milling rough operations in Inconel® 718 in aged condition was carried out. Furthermore, both the influence of coatings in cemented carbide milling tools and the cutting speed in the ceramic tools were analysed. All tools were tested until the end of their useful life. The cost performance ratio was used to compare the productivity of the tested tools. Despite the results showing higher durability of the coated carbide tool, the ceramic tools presented a better behavior in terms of productivity at higher speed. Therefore, ceramic tools should be used for higher productivity demands, while coated carbide tools for low speed-high volume material removal.


Machines ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 75
Author(s):  
Nikolaos E. Karkalos ◽  
Panagiotis Karmiris-Obratański ◽  
Szymon Kurpiel ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Surface quality has always been an important goal in the manufacturing industry, as it is not only related to the achievement of appropriate geometrical tolerances but also plays an important role in the tribological behavior of the surface as well as its resistance to fatigue and corrosion. Usually, in order to achieve sufficiently high surface quality, process parameters, such as cutting speed and feed, are regulated or special types of cutting tools are used. In the present work, an alternative strategy for slot milling is adopted, namely, trochoidal milling, which employs a more complex trajectory for the cutting tool. Two series of experiments were initially conducted with traditional and trochoidal milling under various feed and cutting speed values in order to evaluate the capabilities of trochoidal milling. The findings showed a clear difference between the two milling strategies, and it was shown that the trochoidal milling strategy is able to provide superior surface quality when the appropriate process parameters are also chosen. Finally, the effect of the depth of cut, coolant and trochoidal stepover on surface roughness during trochoidal milling was also investigated, and it was found that lower depths of cut, the use of coolant and low values of trochoidal stepover can lead to a considerable decrease in surface roughness.


Sign in / Sign up

Export Citation Format

Share Document