Stresses Produced in a Half Plane by Moving Loads

1958 ◽  
Vol 25 (4) ◽  
pp. 433-436
Author(s):  
J. Cole ◽  
J. Huth

Abstract A study is made of stresses and displacements induced in an elastic half plane (plane strain) by a concentrated line load moving at a constant speed along its surface. The stress field for an arbitrary load distribution can be built up by superposition of these concentrated-load solutions. Three cases are considered: (a) The load is moving more slowly than either the longitudinal or transversal wave speeds of the elastic medium (subsonic case). (b) The load speed is between the two wave speeds (transonic case). (c) The load speed is greater than either wave speed (supersonic case). In each of these cases the nature of the singularity caused by the load is examined and the complete solution is given.

2003 ◽  
Vol 70 (5) ◽  
pp. 668-675
Author(s):  
Y.-L. Chung ◽  
M.-R. Chen

This work investigates the phenomenon of mode I central crack propagating with a constant speed subjected to a concentrated load on the crack surfaces. This problem is not a self-similar problem. However, the method of self-similar potential (SSP) in conjunction with superposition can be successfully applied if the time delay and the origin shift are considered. After the complete solution is obtained, attention is stressed on the dynamic stress intensity factors (DSIFs). Analytical results indicate that the DSIF equals the static stress intensity factor if the crack-tip speed is very slow and equal to zero if the crack-tip velocity approaches the Rayleigh-wave speed. However, the dynamic effect becomes obvious only if the crack-tip speed is 0.4 times faster than the S-wave speed. Moreover, the combination of SSP method and the superposition scheme can be applied to the expanding uniformly distributed load acting on a portion of the crack surfaces.


1967 ◽  
Vol 34 (1) ◽  
pp. 100-103 ◽  
Author(s):  
A. Jahanshahi

The exact solution to the problem of diffraction of plane harmonic polarized shear waves by a half-plane crack extending under antiplane strain is constructed. The solution is employed to study the nature of the stress field associated with an extending crack in an elastic medium excited by stress waves.


1990 ◽  
Vol 112 (4) ◽  
pp. 590-595 ◽  
Author(s):  
J. H. Steward

In this paper, the requirements for an accurate 3D model of the tooth contact-line load distribution in real spur gears are summarized. The theoretical results (obtained by F.E.M.) for the point load compliance of wide-faced spur gear teeth are set out. These values compare well with experimental data obtained from tests on a large spur gear (18 mm module, 18 teeth).


1996 ◽  
Vol 04 (02) ◽  
pp. 171-180
Author(s):  
H.R. CHAUDHRY ◽  
B. BUKIET ◽  
M. LACKER

The traditional approach to calculating stress distribution in arteries has been to assume (incorrectly) that the unloaded intact artery is stress-free. We consider the unloaded intact artery to have initial (i.e. residual) stresses and study how this affects the calculated wave speed of the arterial pulse. We use a set of equations that describe, in a simplified way, the blood flow in arteries and apply nonlinear elasticity theory to derive a formula for wave speed. We compare wave speed calculations under two assumptions (considering unloaded intact arteries as stress-free and considering these arteries to have residual stresses). We find that wave speeds calculated assuming residual stresses are more realistic. Clinical applications of this work are suggested.


2021 ◽  
Author(s):  
Jonathon Blank ◽  
Darryl Thelen ◽  
Matthew S. Allen ◽  
Joshua Roth

The use of shear wave propagation to noninvasively gauge material properties and loading in tendons and ligaments is a growing area of interest in biomechanics. Prior models and experiments suggest that shear wave speed primarily depends on the apparent shear modulus (i.e., shear modulus accounting for contributions from all constituents) at low loads, and then increases with axial stress when axially loaded. However, differences in the magnitudes of shear wave speeds between ligaments and tendons, which have different substructures, suggest that the tissue’s composition and fiber alignment may also affect shear wave propagation. Accordingly, the objectives of this study were to (1) characterize changes in the apparent shear modulus induced by variations in constitutive properties and fiber alignment, and (2) determine the sensitivity of the shear wave speed-stress relationship to variations in constitutive properties and fiber alignment. To enable systematic variations of both constitutive properties and fiber alignment, we developed a finite element model that represented an isotropic ground matrix with an embedded fiber distribution. Using this model, we performed dynamic simulations of shear wave propagation at axial strains from 0% to 10%. We characterized the shear wave speed-stress relationship using a simple linear regression between shear wave speed squared and axial stress, which is based on an analytical relationship derived from a tensioned beam model. We found that predicted shear wave speeds were both in-range with shear wave speeds in previous in vivo and ex vivo studies, and strongly correlated with the axial stress (R2 = 0.99). The slope of the squared shear wave speed-axial stress relationship was highly sensitive to changes in tissue density. Both the intercept of this relationship and the apparent shear modulus were sensitive to both the shear modulus of the ground matrix and the stiffness of the fibers’ toe-region when the fibers were less well-aligned to the loading direction. We also determined that the tensioned beam model overpredicted the axial tissue stress with increasing load when the model had less well-aligned fibers. This indicates that the shear wave speed increases likely in response to a load-dependent increase in the apparent shear modulus. Our findings suggest that researchers may need to consider both the material and structural properties (i.e., fiber alignment) of tendon and ligament when measuring shear wave speeds in pathological tissues or tissues with less well-aligned fibers.


2019 ◽  
Vol 9 (18) ◽  
pp. 3923 ◽  
Author(s):  
Xiaoming Zhang ◽  
Boran Zhou ◽  
Alex X. Zhang

Extravascular lung water (EVLW) is a basic symptom of congestive heart failure and other conditions. Computed tomography (CT) is standard method used to assess EVLW, but it requires ionizing radiation and radiology facilities. Lung ultrasound reverberation artifacts called B-lines have been used to assess EVLW. However, analysis of B-line artifacts depends on expert interpretation and is subjective. Lung ultrasound surface wave elastography (LUSWE) was developed to measure lung surface wave speed. This pilot study aimed at measureing lung surface wave speed due to lung water in an ex vivo swine lung model. The surface wave speeds of a fresh ex vivo swine lung were measured at 100 Hz, 200 Hz, 300 Hz, and 400 Hz. An amount of water was then filled into the lung through its trachea. Ultrasound imaging was used to guide the water filling until significant changes were visible on the imaging. The lung surface wave speeds were measured again. It was found that the lung surface wave speed increases with frequency and decreases with water volume. These findings are confirmed by experimental results on an additional ex vivo swine lung sample.


2007 ◽  
Vol 42 (5) ◽  
pp. 415-422
Author(s):  
L Bohórquez ◽  
D. A Hills

The contact between a flat-faced rigid block and an elastic half-plane has been studied, showing that an asymptotic solution correctly captures the stress field adjacent to the contact corners for all values of Poisson's ratio. It is shown that, in practical cases, the plastic zone, which is inevitably present at the contact corners, envelopes the oscillatory behaviour implied locally but is surrounded by an elastic hinterland correctly represented by the asymptote.


1991 ◽  
Vol 113 (2) ◽  
pp. 308-313 ◽  
Author(s):  
G. N. Brooks

A lower-bound limit analysis of loaded integral lugs on cylindrical shells is presented. Normal force and circumferential and longitudinal moment loadings on the lug are considered. The equilibrium solution, necessary for a lower bound, is obtained as a convolution integral of the concentrated load solutions of linear shallow shell theory. The load distribution is chosen to satisfy the yield condition everywhere, while maximizing the load. A simplified yield condition in terms of the shell stress resultants is used. Failure is assumed to occur in the shell, not the lug. Encouraging comparisons with available experimental results for moment-loaded rectangular lugs on pipes are presented. The use of shallow shell theory enables the problem geometry to be described by one less parameter than complete shell theory.


Sign in / Sign up

Export Citation Format

Share Document