Predicting the Nusselt Number of Heterogeneous (Porous) Enclosures Using a Generic Form of the Berkovsky–Polevikov Correlations

2013 ◽  
Vol 135 (8) ◽  
Author(s):  
Hongtao Qiu ◽  
José L. Lage ◽  
Silvio L. M. Junqueira ◽  
Admilson T. Franco

A well-known set of Berkovsky–Polevikov (BP) correlations have been extremely useful in predicting the wall-averaged Nusselt number of “wide” enclosures heated from the side and filled with a fluid undergoing natural convection. A generic form of these correlations, dependent on only two coefficients, is now proposed for predicting the Nusselt number of a heterogeneous (fluid–solid), porous enclosure, i.e., an enclosure filled not only with a fluid but also with uniformly distributed, disconnected and conducting, homogeneous solid particles. The final correlations, and their overall accuracies, are determined by curve fitting the numerical simulation results of the natural convection process inside the heterogeneous enclosure. Results for several Ra and Pr, and for 1, 4, 9, 16, and 36 solid particles, with the fluid volume-fraction (porosity) maintained constant, indicate the accuracy of these correlations to be detrimentally affected by the interference phenomenon caused by the solid particles onto the vertical boundary layers that develop along the hot and cold walls of the enclosure; the resulting correlations, in this case, present standard deviation varying between 6.5% and 19.7%. An analytical tool is then developed for predicting the interference phenomenon, using geometric parameters and scale analysis results. When used to identify and isolate the interference phenomenon, this tool is shown to yield correlations with much improved accuracies between 2.8% and 9.2%.

2021 ◽  
pp. 57-57
Author(s):  
Zakaria Lafdaili ◽  
Sakina El-Hamdani ◽  
Abdelaziz Bendou ◽  
Karim Limam ◽  
Bara El-Hafad

In this work we study numerically the three-dimensional turbulent natural convection in a partially heated cubic cavity filled with water containing metallic nanoparticles, metallic oxides and others based on carbon.The objective is to study and compare the effect of the addition of nanoparticles studied in water and also the effect of the position of the heated partition on the heat exchange by turbulent natural convection in this type of geometry, which can significantly improve the design of heat exchange systems for better space optimization. For this we have treated numerically for different volume fractions the turbulent natural convection in the two cases where the cavity is heated respectively by a vertical and horizontal strip in the middle of one of the vertical walls. To take into account the effects of turbulence, we used the standard turbulence model ? - ?. The governing equations are discretized by the finite volume method using the power law scheme which offers a good stability characteristic in this type of flow. The results are presented in the form of isothermal lines and current lines. The variation of the mean Nusselt number is calculated for the two positions of the heated partition as a function of the volume fraction of the nanoparticles studied in water for different Rayleigh numbers.The results show that carbon-based nanoparticles intensify heat exchange by convection better and that the position of the heated partition significantly influences heat exchange by natural convection. In fact, an improvement in the average Nusselt number of more than 20% is observed for the case where the heated partition is horizontal.


Author(s):  
Abdelraheem Mahmoud Aly ◽  
Ehab Mahmoud

The numerical simulations of the uniform circular rotation of paddles on circular cylinder results natural convection flow of Al2O3-water in a cross-shaped porous cavity were performed by incompressible representation of smoothed particle hydrodynamics entitled ISPH method. The two vertical area of a cross-shaped cavity is saturated with homogeneous porous media and the whole horizontal area of a cross-shaped cavity is saturated with heterogeneous porous media. The inner paddles on the circular cylinder are rotating around their center by a uniform circular velocity. The whole embedded body of paddles on a circular cylinder has temperature Th. The wall-sides of a cross-shaped cavity are positioned at a temperature Tc. The current geometry can be applied in analysis and understanding the thermophysical behaviors of the electronic motors. The angular velocity is taken as ! = 7:15 and consequently the natural convection case is only considered due to the low speed of inner rotating shape. The performed simulations are represented in the graphical for the temperature distributions, velocity fields and tabular forms for average Nusselt number. The results revealed that an augmentation on paddle length rises the heat transfer and speed of fluid flow inside a cross shaped cavity. Also, an incrementation on Rayleigh number augments the heat transfer and speed of the fluid flow inside a cross-shaped cavity. The fluid flow is circulated only around the rotating inner shape when Darcy parameter decreases to Da = 105. Average Nusselt number Nu enhances by an increment on the paddle lengths and nanoparticles volume fraction


2020 ◽  
Author(s):  
Sattar Aljobair ◽  
Akeel Abdullah Mohammed ◽  
Israa Alesbe

Abstract The natural convection heat transfer and fluid flow characteristic of water based Al2O3 nano-fluids in a symmetrical and unsymmetrical corrugated annulus enclosure has been studied numerically using CFD. The inner cylinder is heated isothermally while the outer cylinder is kept constant cold temperature. The study includes eight models of corrugated annulus enclosure with constant aspect ratio of 1.5. The governing equations of fluid motion and heat transfer are solved using stream-vorticity formulation in curvilinear coordinates. The range of solid volume fractions of nanoparticles extends from PHI=0 to 0.25, and Rayleigh number varies from 104 to 107. Streamlines, isotherms, local and average Nusselt number of inner and outer cylinder has been investigated in this study. Sixty-four correlations have been deduced for the average Nusselt number for the inner and outer cylinders as a function of Rayleigh number have been deduced for eight models and five values of volume fraction of nano particles with an accuracy range 6-12 %. The results show that, the average heat transfer rate increases significantly as particle volume fraction and Rayleigh number increase. Also, increase the number of undulations in unsymmetrical annuli reduces the heat transfer rates which remain higher than that in symmetrical annuli. There is no remarkable change in isotherms contour with increase of volume fraction of nanofluid.


2012 ◽  
Vol 16 (5) ◽  
pp. 1317-1323 ◽  
Author(s):  
Ching-Chang Cho ◽  
Her-Terng Yau ◽  
Cha’o-Kuang Chen

This paper investigates the natural convection heat transfer enhancement of Al2O3-water nanofluid in a U-shaped cavity. In performing the analysis, the governing equations are modeled using the Boussinesq approximation and are solved numerically using the finite-volume numerical method. The study examines the effects of the nanoparticle volume fraction, the Rayleigh number and the geometry parameters on the mean Nusselt number. The results show that for all values of the Rayleigh number, the mean Nusselt number increases as the volume fraction of nanoparticles increases. In addition, it is shown that for a given length of the heated wall, extending the length of the cooled wall can improve the heat transfer performance.


Author(s):  
Marneni Narahari ◽  
Suresh Kumar Raju Soorapuraju ◽  
Rajashekhar Pendyala ◽  
Ioan Pop

Purpose The purpose of this paper is to present a numerical investigation of the transient two-dimensional natural convective boundary-layer flow of a nanofluid past an isothermal vertical plate by incorporating the effects of Brownian motion and thermophoresis in the mathematical model. Design/methodology/approach The problem is formulated using the Oberbeck–Boussinesq and the standard boundary-layer approximations. The governing coupled non-linear partial differential equations for conservation of mass, momentum, thermal energy and nanoparticle volume fraction have been solved by using an efficient implicit finite-difference scheme of the Crank–Nicolson type, which is stable and convergent. Numerical computations are performed and the results for velocity, temperature and nanoparticle volume fraction are presented in graphs at different values of system parameters such as Brownian motion parameter, thermophoresis parameter, buoyancy ratio parameter, Prandtl number, Lewis number and dimensionless time. The results for local and average skin-friction and Nusselt number are also presented graphically and discussed thoroughly. Findings It is found that the velocity, temperature and nanoparticle volume fraction profiles enhance with respect to time and attain steady-state values as time progresses. The local Nusselt number is found to decrease with increasing thermophoresis parameter, while it increases slightly with increasing Brownian motion parameter. To validate the present numerical results, the steady-state local Nusselt number results for the limiting case of a regular fluid have been compared with the existing well-known results at different Prandtl numbers, and the results are found to be in an excellent agreement. Research limitations/implications The present analysis is limited to the transient laminar natural convection flow of a nanofluid past an isothermal semi-infinite vertical plate in the absence of viscous dissipation and thermal radiation. The unsteady natural convection flow of a nanofluid will be investigated for various physical conditions in a future work. Practical implications Unsteady flow devices offer potential performance improvements as compared with their steady-state counterparts, and the flow fields in the unsteady flow devices are typically transient in nature. The present study provides very useful information for heat transfer engineers to understand the heat transfer enhancement with the nanofluid flows. The present results have immediate relevance in cooling technologies. Originality/value The present research work is relatively original and illustrates the transient nature of the natural convective nanofluid boundary-layer flow in the presence of Brownian motion and thermophoresis.


2019 ◽  
Vol 15 (1) ◽  
pp. 283-303 ◽  
Author(s):  
Mahmoud Salari ◽  
Emad Hasani Malekshah ◽  
Mohammad Reza Sarlak ◽  
Masoud Hasani Malekshah ◽  
Mohammad Pilfoush

Purpose The purpose of this paper is to investigate the three-dimensional natural convection and entropy generation in a cuboid enclosure filled with two immiscible fluids of nanofluid and air. Design/methodology/approach One surface of the enclosure is jagged and another one is smooth. The finite volume approach is applied for computation. There are two partially side heaters. Furthermore, the Navier–Stokes equations and entropy generation formulation are solved in the 3D form. Findings The effects of different governing parameters, such as the jagged surface (JR=0, 0.02, 0.04, 0.08, 0.12 and 0.16), Rayleigh number (103⩽Ra⩽106) and solid volume fraction of nanofluid (φ=1, 1.5, 2 vol%), on the fluid flow, temperature field, Nusselt number, volumetric entropy generation and Bejan number are presented, comprehensively. The results indicate that the average Nusselt number increases with the increase in the Rayleigh number and solid volume fraction of nanofluid. Moreover, the flow structure is significantly affected by the jagged surface. Originality/value The originality of this work is to analyze the natural-convection fluid flow and heat transfer under the influence of jagged surfaces of electrodes in high-current lead–acid batteries.


2020 ◽  
Vol 847 ◽  
pp. 114-119
Author(s):  
Barbie Leena Barhoi ◽  
Ramesh Chandra Borah ◽  
Sandeep Singh

The present study relates to numerical investigation of natural convection heat transfer in a nanofluid filled square enclosure. One side of the enclosure is maintained at high temperature and the other side at a low temperature; while the top and bottom sides are adiabatic. The commercial CFD software ANSYS-FLUENT© was used to solve this numerical problem with the governing differential equations discretized by a control volume approach. nanofluids of Cu-water, Al2O3-water and TiO2-water have been simulated for a range of Rayleigh numbers and volume fractions. The results were obtained in the form of streamlines and isotherms. Interpretations of the results are done based on heat transfer rates, volume fraction, Rayleigh number and Nusselt number. It is to be noted that addition of nanoparticles enhances the heat transfer rate. It is also observed that the Nusselt number is highly affected by volume fraction and Rayleigh number.


2020 ◽  
Vol 92 (1) ◽  
pp. 10904 ◽  
Author(s):  
Rabeh Slimani ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Umair Khan ◽  
M. Sahnoun ◽  
...  

The current study investigates MHD natural convection heat transfer of a hybrid nanofluid in a truncated cone along with transparent domains having the stimulus of an inherent constant magnetic field. The governing equations subject to the physical boundary conditions are solved numerically by using the Galerkin finite element method. The effects of the various parameters involved in the problem such as the Rayleigh number Ra (ranging between 103 and 106), the Hartmann number Ha (ranging between 0 and 60), and the porosity ratio ε (0.1–0.9) are examined. Moreover, the effects of Da which represents the Darcy number (between 10‑3 and 10‑1) and the volume fraction of nanoparticles ϕ for the dissipated nanoparticles of Al2O3-Cu are reported in terms of the streamlines and isotherms distributions as well as the Nusselt number. Such parameters are critical control parameters for both the fluid flow and the rate of heat transfer of the natural convection in the annular space. The solution outcomes proof that the average Nusselt number varies directly with the dynamic field flowing through a porous media, whereas it behaves inversely with the magnetic field.


Author(s):  
Farooq Shaik ◽  
Vinay Kumar Domakonda

In the present work, results of a numerical study carried out using finite volume method, to investigate the fluid flow and heat transfer characteristics of Alumina ( Al2O3 ) nanoparticles in the base fluid (water) in a square cavity under natural convection mode are presented. The Semi Implicit Method for Pressure Linked Equations (SIMPLE) algorithm was used to solve the discretized momentum and energy equations. Constant temperature heat sources of same strength are placed on bottom and left vertical surfaces whereas the right surface was kept cold, while the top surface was maintained as adiabatic. The impact of Rayleigh number (RaN) ( 1000 to 106 ) and nanoparticles volume fraction (Φ = 0 %, 5 %, 10 %, 15 % and 20 %) on fluid and heat flow characteristics were numerically investigated and presented in the form of streamlines, isothermal lines, mid line horizontal and vertical velocity components, local Nusselt number ( Nuloc ) and average Nusselt number ( Nuavg ). The obtained results indicate, for lower RaN ( i.e; 103 ), conduction dominates over convection near heated surfaces and results in lower fluid velocities and poor heat transfer. For higher values of RaN ( RaN = 105 and 106 ) and volume fraction of nanoparticles, there was a significant increase in mid horizontal and vertical velocity components, Nuloc and Nuavg due to increase in convective heat transfer and thermal conductivity of nanofluid.


2020 ◽  
Vol 3 (1) ◽  
pp. 1-14
Author(s):  
Amin Moslemi Petrudi ◽  
Pourya Fathi ◽  
Masoud Rahmani

Heat transfer science is one of the most important and most applied engineering sciences, with the importance of energy management and energy conservation being doubled. Because of their properties, nanofluids have been widely used in various industries, making them particularly important to study. In this paper, the Nusselt number and coefficient of friction with volume fraction ranging from 0 to 0.1 at approximately Reynolds numbers of 200 to 5000 are studied experimentally. Higher thermal conductivity, better stability, lower pressure drop was observed using nanoparticles of solid particles. NSGA II algorithm was used to maximize Nusselt number and minimum friction coefficient by changing temperature and volume fraction of nanoparticles. To obtain Nusselt number and friction coefficient based on the temperature and volume fraction of the nanoparticles, the experimental data response surface methodology was used and with increasing Reynolds number, the Nusselt number increased and the friction coefficient decreased. In order to evaluate the objective functions in the optimization, the response surface methodology is attached to the optimization algorithm. At the end, the Pareto Front and its corresponding optimal points are presented.


Sign in / Sign up

Export Citation Format

Share Document