Empirical Models for a Screw Expander Based on Experimental Data From Organic Rankine Cycle System Testing

Author(s):  
Vamshi Krishna Avadhanula ◽  
Chuen-Sen Lin

The screw expander discussed in this work was part of a 50 kW organic Rankine cycle (ORC) system. The ORC was tested under different conditions in heat source and heat sink. In conjunction with collecting data for the ORC system, experimental data were also collected for the individual components of the ORC, viz. evaporator, preheater, screw expander, working fluid pump, and condenser. Experimental data for the screw expander were used to develop the two empirical models discussed in this paper for estimating screw expander performance. As the physical parameters of the screw expander discussed in this article are not known, a “black-box” approach was followed to estimate screw expander power output, based on expander inlet and outlet pressure and temperature data. Refrigerant R245fa was used as the working fluid in the ORC. The experimental data showed that the screw expander had ranges of pressure ratio (2.70 to 6.54), volume ratio (2.54 to 6.20), and power output (10 to 51.5 kW). Of the two empirical models, the first model is based on the polytropic expansion process, in which an expression for the polytropic exponent is found by applying regression curve-fitting analysis as a function of the expander pressure ratio and volume ratio. In the second model, an expression for screw expander work output is found by applying regression curve-fitting analysis as a function of the expander isentropic work output. The predicted screw expander power output using the polytropic exponent model was within ±10% of experimental values; the predicted screw expander power output using the isentropic work output model was within ±7.5% of experimental values.

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Hasan Eren Bekiloğlu ◽  
Hasan Bedir ◽  
Günay Anlaş

Abstract Although there are studies on optimizing organic Rankine cycles (ORCs) through individual components, in this study, for the first time, both evaporator and turbine designs are included in a multiobjective optimization. Twenty-eight working fluids are used to find optimum cycle parameters for three source temperatures (90, 120, and 150 °C). A mean-line radial inflow turbine model is used. Nondominated Sorting Genetic Algorithm II is utilized to minimize total evaporator area per net power output and maximize performance factor simultaneously. The technique for Order Preference by Similarity to Ideal Situation (TOPSIS) procedure is followed to obtain ideal solutions. A group of working fluids with highest net power output is determined for each heat source temperature. Optimized geometric parameters of the evaporator vary in a narrow range independent of the working fluid and the source temperature, but evaporator PPTD and degree of superheating depend on the working fluid. The specific speed, the pressure ratio through the turbine, and the nozzle inlet-to-outlet radius ratio do not change significantly with cycle conditions.


Author(s):  
Giovanni Manente ◽  
Randall Field ◽  
Ronald DiPippo ◽  
Jefferson W. Tester ◽  
Marco Paci ◽  
...  

This article examines how hybridization using solar thermal energy can increase the power output of a geothermal binary power plant that is operating on geothermal fluid conditions that fall short of design values in temperature and flow rate. The power cycle consists of a subcritical organic Rankine cycle using industrial grade isobutane as the working fluid. Each of the power plant units includes two expanders, a vaporizer, a preheater and air-cooled condensers. Aspen Plus was used to model the plant; the model was validated and adjusted by comparing its predictions to data collected during the first year of operation. The model was then run to determine the best strategy for distributing the available geothermal fluid between the two units to optimize the plant for the existing degraded geofluid conditions. Two solar-geothermal hybrid designs were evaluated to assess their ability to increase the power output and the annual energy production relative to the geothermal-only case.


Author(s):  
Fredrik Ahlgren ◽  
Maria E. Mondejar ◽  
Magnus Genrup ◽  
Marcus Thern

Maritime transportation is a significant contributor to SOx, NOx and particle matter emissions, even though it has a quite low CO2 impact. New regulations are being enforced in special areas that limit the amount of emissions from the ships. This fact, together with the high fuel prices, is driving the marine industry towards the improvement of the energy efficiency of current ship engines and the reduction of their energy demand. Although more sophisticated and complex engine designs can improve significantly the efficiency of the energy systems in ships, waste heat recovery arises as the most influent technique for the reduction of the energy consumption. In this sense, it is estimated that around 50% of the total energy from the fuel consumed in a ship is wasted and rejected in fluid and exhaust gas streams. The primary heat sources for waste heat recovery are the engine exhaust and the engine coolant. In this work, we present a study on the integration of an organic Rankine cycle (ORC) in an existing ship, for the recovery of the main and auxiliary engines exhaust heat. Experimental data from the operating conditions of the engines on the M/S Birka Stockholm cruise ship were logged during a port-to-port cruise from Stockholm to Mariehamn over a period of time close to one month. The ship has four main engines Wärtsilä 5850 kW for propulsion, and four auxiliary engines 2760 kW used for electrical consumers. A number of six load conditions were identified depending on the vessel speed. The speed range from 12–14 knots was considered as the design condition, as it was present during more than 34% of the time. In this study, the average values of the engines exhaust temperatures and mass flow rates, for each load case, were used as inputs for a model of an ORC. The main parameters of the ORC, including working fluid and turbine configuration, were optimized based on the criteria of maximum net power output and compactness of the installation components. Results from the study showed that an ORC with internal regeneration using benzene would yield the greatest average net power output over the operating time. For this situation, the power production of the ORC would represent about 22% of the total electricity consumption on board. These data confirmed the ORC as a feasible and promising technology for the reduction of fuel consumption and CO2 emissions of existing ships.


Author(s):  
Mauro Reini

In recent years, a big effort has been made to improve microturbines thermal efficiency, in order to approach 40%. Two main options may be considered: i) a wide usage of advanced materials for hot ends components, like impeller and recuperator; ii) implementing more complicated thermodynamic cycle, like combined cycle. In the frame of the second option, the paper deals with the hypothesis of bottoming a low pressure ratio, recuperated gas cycle, typically realized in actual microturbines, with an Organic Rankine Cycle (ORC). The object is to evaluate the expected nominal performance parameters of the integrated-combined cycle cogeneration system, taking account of different options for working fluid, vapor pressure and component’s performance parameters. Both options of recuperated and not recuperated bottom cycles are discussed, in relation with ORC working fluid nature and possible stack temperature for microturbine exhaust gases. Finally, some preliminary consideration about the arrangement of the combined cycle unit, and the effects of possible future progress of gas cycle microturbines are presented.


2019 ◽  
Vol 2019 ◽  
pp. 1-15 ◽  
Author(s):  
Suresh Baral

The current research study focuses on the feasibility of stand-alone hybrid solar-geothermal organic Rankine cycle (ORC) technology for power generation from hot springs of Bhurung Tatopani, Myagdi, Nepal. For the study, the temperature of the hot spring was measured on the particular site of the heat source of the hot spring. The measured temperature could be used for operating the ORC system. Temperature of hot spring can also further be increased by adopting the solar collector for rising the temperature. This hybrid type of the system can have a high-temperature heat source which could power more energy from ORC technology. There are various types of organic working fluids available on the market, but R134a and R245fa are environmentally friendly and have low global warming potential candidates. The thermodynamic models have been developed for predicting the performance analysis of the system. The input parameter for the model is the temperature which was measured experimentally. The maximum temperature of the hot spring was found to be 69.7°C. Expander power output, thermal efficiency, heat of evaporation, solar collector area, and hybrid solar ORC system power output and efficiency are the outputs from the developed model. From the simulation, it was found that 1 kg/s of working fluid could produce 17.5 kW and 22.5 kW power output for R134a and R245fa, respectively, when the geothermal source temperature was around 70°C. Later when the hot spring was heated with a solar collector, the power output produced were 25 kW and 30 kW for R134a and R245fa, respectively, when the heat source was 99°C. The study also further determines the cost of electricity generation for the system with working fluids R134a and R245fa to be $0.17/kWh and $0.14/kWh, respectively. The levelised cost of the electricity (LCOE) was $0.38/kWh in order to be highly feasible investment. The payback period for such hybrid system was found to have 7.5 years and 10.5 years for R245fa and R134a, respectively.


2021 ◽  
Vol 143 (9) ◽  
Author(s):  
Wahiba Yaïci ◽  
Evgueniy Entchev ◽  
Pouyan Talebizadehsardari ◽  
Michela Longo

Abstract Overall, there are numerous sustainable sources of renewable, low-temperature heat, principally solar energy, geothermal energy, and energy produced from industrial wastes. Extended utilization of these low-temperature alternatives has a certain capacity of decreasing fossil fuel use with its associated very hazardous greenhouse gas emissions. Researchers have commonly recognized the organic Rankine cycle (ORC) as a feasible and suitable system to produce electrical power from renewable sources based on its advantageous use of volatile organic fluids as working fluids (WFs). Researchers have similarly shown an affinity to the exploitation of zeotropic mixtures as ORC WFs due to their capability to enhance the thermodynamic performance of ORC systems, an achievement supported by improved fits of the temperature profiles of the WF and the heat source/sink. This paper determines both the technical feasibility and the benefits of using zeotropic mixtures as WFs by means of a simulation study of an ORC system. This study analyzes the thermodynamic performance of ORC systems using zeotropic WF mixtures to produce electricity driven by low-temperature solar heat sources for use in buildings. A thermodynamic model is created with an ORC system with and without a regenerator. Five zeotropic mixtures with diverse compositions between 0 and 1 in 0.2 increments of R245fa/propane, R245fa/hexane, R245fa/heptane, pentane/hexane, and isopentane/hexane are assessed and compared with identify the best blends of mixtures that are able to produce superior efficiency in their system cycles. Results disclosed that R245fa/propane (0.4/0.6) with regenerator produces the highest net power output of 7.9 kW and cycle efficiency of 9.4% at the operating condition with a hot source temperature of 85 °C. The study also investigates the effects of the volume flow ratio, and evaporation and condensation temperature glide on the ORC’s thermodynamic performance. Following a thorough analysis of each mixture, R245fa/propane is chosen for a parametric study to examine the effects of operating factors on the system’s efficiency and sustainability index. It was found that the highest cycle efficiency and highest second law cycle efficiency of around 10.5% and 84.0%, respectively, were attained with a mass composition of 0.6/0.4 at the hot source temperature of 95 °C and cold source temperature of 20 °C with a net power output of 9.6 kW. Moreover, results revealed that for zeotropic mixtures, there is an optimal composition range within which binary mixtures are tending to work more efficiently than the component pure fluids. In addition, a significant increase in cycle efficiency can be achieved with a regenerative ORC, with cycle efficiency in the range 3.1–9.8% versus 8.6–17.4% for ORC both without and with regeneration, respectively. In conclusion, utilizing zeotropic mixtures may well expand the restriction faced in choosing WFs for solar-powered ORC-based micro-combined heat and power (CHP) systems.


2019 ◽  
Vol 8 (2) ◽  
pp. 141 ◽  
Author(s):  
Ghalya Pikra ◽  
Nur Rohmah

Regenerative organic Rankine cycle (RORC) can be used to improve organic Rankine cycle (ORC) performance. This paper presents a comparison of a single (SSRORC) and double stage regenerative organic Rankine cycle (DSRORC) using a medium grade heat source. Performance for each system is estimated using the law of thermodynamics I and II through energy and exergy balance. Solar thermal is used as the heat source using therminol 55 as a working fluid, and R141b is used as the organic working fluid. The initial data for the analysis are heat source with 200°C of temperature, and 100 L/min of volume flow rate. Analysis begins by calculating energy input to determine organic working fluid mass flow rate, and continued by calculating energy loss, turbine power and pump power consumption to determine net power output and thermal efficiency. Exergy analysis begins by calculating exergy input to determine exergy efficiency. Exergy loss, exergy destruction at the turbine, pump and feed heater is calculated to complete the calculation. Energy estimation result shows that DSRORC determines better net power output and thermal efficiency for 7.9% than SSRORC, as well as exergy estimation, DSRORC determines higher exergy efficiency for 7.69%. ©2019. CBIORE-IJRED. All rights reserved


Author(s):  
C. R. Baggley ◽  
◽  
M. G. Read ◽  

It is well known that large amounts of energy loss occurs at low temperature states in a wide range of industrial processes., The recovery and reuse of this energy is at the forefront of increasing the overall efficiencies of industrial systems. The aim of this paper is to investigate the effectiveness of using a Thermo-Fluidic Exchange (TFE) pump at low temperature conditions in both a SaturatedVapour Organic Rankine Cycle (SORC) and a Trilateral Flash Cycle (TFC). For some low temperature applications, TFCs have been shown to achieve higher net power output than conventional SORCs, due to their ability to extract more heat from the source fluid. This is the subject of current research as a result of advancements made in the design of positive displacement machines for operation as twophase expanders. Conventional turbines cannot be used for TFCs as they must operate in the vapour phase. One drawback of the TFC is the higher working fluid mass flow rate required. Depending on the scale of the system, this can potentially cause difficulties with pump selection. A TFE pump uses heat input to the system to increase the pressure and temperature of the working fluid, rather than the work input in a standard mechanical pump. This paper compares the net power output achievable using both mechanical and TFE pumps with SORC and TFC systems. The results suggest that the TFE pump could be a viable option for TFC systems


Author(s):  
Arun Kumar Narasimhan ◽  
Diego Guillen Perez ◽  
D. Yogi Goswami

Abstract Scroll expanders are generally used for low temperature power generation applications due to their inherently small built-in volume ratio. The working fluid and operating conditions play an important role in the expander performance as well as its physical size and volume ratio. Hence, a comparative study of scroll expander performance was carried out between two different working fluids, R433C and supercritical (s-CO2). The s-CO2 Brayton cycle achieved a maximum cycle efficiency of 13.6% at an expander supply pressure of 11 MPa. Two separate scroll geometries were modeled for supercritical Organic Rankine Cycle (SORC) using R433C and s-CO2 Brayton cycle for the operating conditions that provided the maximum cycle performance. The s-CO2 scroll geometry achieved a maximum expander efficiency of 80% with a volume ratio of 2.5 and a diameter of 19 cm. The high inlet temperatures required a much higher volume ratio of 6.2 and scroll diameter of 30 cm for the R433C based SORC leading to greater leakages and lower expander efficiency of 62%. The comparative study shows that s-CO2 is better suited for scroll expander than R433C at such high expander supply temperatures.


Author(s):  
L. Sciacovelli ◽  
P. Cinnella

Transonic flows through axial, multistage, transcritical organic rankine cycle (ORC) turbines are investigated by using a numerical solver including advanced multiparameter equations of state and a high-order discretization scheme. The working fluids in use are the refrigerants R134a and R245fa, classified as dense gases due to their complex molecules and relatively high molecular weight. Both inviscid and viscous numerical simulations are carried out to quantify the impact of dense gas effects and viscous effects on turbine performance. Both supercritical and subcritical inlet conditions are studied for the considered working fluids. In the former case, flow across the turbine is transcritical, since turbine output pressure is subcritical. Numerical results show that, due to dense gas effects characterizing the flow at supercritical inlet conditions, supercritical ORC turbines enable, for a given pressure ratio, a higher isentropic efficiency than subcritical turbines using the same working fluid. Moreover, for the selected operating conditions, R134a provides a better performance than R245fa.


Sign in / Sign up

Export Citation Format

Share Document