Frictional Indentation of Anisotropic Magneto-Electro-Elastic Materials by a Rigid Indenter

2014 ◽  
Vol 81 (7) ◽  
Author(s):  
Yue-Ting Zhou ◽  
Zheng Zhong

An exact analysis on frictional contact between a rigid punch and anisotropic magneto-electro-elastic materials is performed, within the framework of the fully coupled theory. The indenter moves relative to magneto-electro-elastic materials, and Coulomb friction law is used. The mixed boundary value problem is reduced to singular integral equations of the second kind with analytical solution presented. For a triangular or semiparabolic indenter, explicit expression for surface physical in-plane stress, electrical displacement and magnetic induction are obtained. Influences of the friction coefficient and the volume fraction on contact behaviors are detailed under the prescribed contact loading conditions. Under either a triangular or semiparabolic indenter, the surface in-plane stress, electric displacement and magnetic induction are discontinuous and unbounded around the leading edge, and such a serious near-edge response can be relieved through adjusting the values of the friction coefficient or the volume fraction.

1977 ◽  
Vol 44 (4) ◽  
pp. 604-610 ◽  
Author(s):  
G. G. Adams ◽  
D. B. Bogy

The solution is obtained for both smooth and bonded contact between strips of different elastic materials and widths. First, the problems are reduced to singular integral equations which are unusual because of the mixed boundary condition on the end of the wider strip. With minor extensions of the usual methods the order of the stress singularity at the corners is extracted from the integral equations and numerical solutions are then obtained for various material combinations and width ratios. The results are compared to previous solutions in which the width ratio is either one or infinity.


2021 ◽  
Vol 34 (1) ◽  
Author(s):  
Xu Zhao ◽  
Yadong Gong ◽  
Guiqiang Liang ◽  
Ming Cai ◽  
Bing Han

AbstractThe existing research on SiCp/Al composite machining mainly focuses on the machining parameters or surface morphology. However, the surface quality of SiCp/Al composites with a high volume fraction has not been extensively studied. In this study, 32 SiCp/Al specimens with a high volume fraction were prepared and their machining parameters measured. The surface quality of the specimens was then tested and the effect of the grinding parameters on the surface quality was analyzed. The grinding quality of the composite specimens was comprehensively analyzed taking the grinding force, friction coefficient, and roughness parameters as the evaluation standards. The best grinding parameters were obtained by analyzing the surface morphology. The results show that, a higher spindle speed should be chosen to obtain a better surface quality. The final surface quality is related to the friction coefficient, surface roughness, and fragmentation degree as well as the quantity and distribution of the defects. Lower feeding amount, lower grinding depth and appropriately higher spindle speed should be chosen to obtain better surface quality. Lower feeding amount, higher grinding depth and spindle speed should be chosen to balance grind efficiently and surface quality. This study proposes a systematic evaluation method, which can be used to guide the machining of SiCp/Al composites with a high volume fraction.


Author(s):  
R Tabassum ◽  
Rashid Mehmood ◽  
O Pourmehran ◽  
NS Akbar ◽  
M Gorji-Bandpy

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.


2014 ◽  
Vol 14 (03) ◽  
pp. 1450039 ◽  
Author(s):  
O. ANWAR BÉG ◽  
M. FERDOWS ◽  
S. SHAMIMA ◽  
M. NAZRUL ISLAM

Laminar magnetohydrodynamic Marangoni-forced convection boundary layer flow of a water-based biopolymer nanofluid containing nanoparticles from a non-isothermal plate is studied. Magnetic induction effects are incorporated. A variety of nanoparticles are studied, specifically, silver, copper, aluminium oxide and titanium oxide. The Tiwari–Das model is utilized for simulating nanofluid effects. The normalized ordinary differential boundary layer equations (mass, magnetic field continuity, momentum, induced magnetic field and energy conservation) are solved subject to appropriate boundary conditions using Maple shooting quadrature. The influence of Prandtl number (Pr), magnetohydrodynamic body force parameter (β), reciprocal of magnetic Prandtl number (α) and nanofluid solid volume fraction (φ) on velocity, temperature and magnetic stream function distributions is investigated in the presence of strong Marangoni effects (ξ i.e., Marangoni parameter is set as unity). Magnetic stream function is accentuated with body force parameter. The flow is considerably decelerated as is magnetic stream function gradient, with increasing nanofluid solid volume fraction, whereas temperatures are significantly enhanced. Interesting features in the flow regime are explored. The study finds applications in the fabrication of complex biomedical nanofluids, biopolymers, etc.


1983 ◽  
Vol 27 (03) ◽  
pp. 147-157 ◽  
Author(s):  
A. J. Smits ◽  
N. Matheson ◽  
P. N. Joubert

This paper reports the results of an extensive experimental investigation into the mean flow properties of turbulent boundary layers with momentum-thickness Reynolds numbers less than 3000. Zero pressure gradient and favorable pressure gradients were studied. The velocity profiles displayed a logarithmic region even at very low Reynolds numbers (as low as Rθ = 261). The results were independent of the leading-edge shape, and the pin-type turbulent stimulators performed well. It was found that the shape and Clauser parameters were a little higher than the correlation proposed by Coles [10], and the skin friction coefficient was a little lower. The skin friction coefficient behavior could be fitted well by a simple power-law relationship in both zero and favorable pressure gradients.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Yu Su ◽  
Le Gong ◽  
Dandan Chen

This paper used graphite nanoparticles with the diameter of 35 and 80 nm and LB2000 vegetable based oil to prepare graphite oil-based nanofluids with different volume fractions by two-step method. The tribological properties of graphite nanoparticles as LB2000 vegetable based oil additive were investigated with a pin-on-disk friction and wear tester. Field emission scanning electron microscope (FE-SEM) and energy dispersive spectroscopy (EDS) were used to examine the morphology and the content of some typical elements of wear scar, respectively. Further, the lubrication mechanism of graphite nanoparticles was explored. It was found that graphite nanoparticles as vegetable based oil additive could remarkably improve friction-reducing and antiwear properties of pure oil. With the increase of volume fraction of graphite nanoparticles, the friction coefficient and the wear volume of disk decreased. At the same volume fraction, the smaller particles, the lower friction coefficient and wear volume. The main reason for the improvement in friction-reducing and antiwear properties of vegetable based oil using graphite nanoparticles was that graphite nanoparticles could form a physical deposition film on the friction surfaces.


Author(s):  
MJ Uddin ◽  
MN Kabir ◽  
O Anwar Bég ◽  
Y Alginahi

In this article, the steady two-dimensional stagnation point flow of a viscous incompressible electrically conducting bio-nanofluid over a stretching/shrinking wedge in the presence of passively control boundary condition, Stefan blowing and multiple slips is numerically investigated. Magnetic induction is also taken into account. The governing conservation equations are rendered into a system of ordinary differential equations via appropriate similarity transformations. The reduced system is solved using a fast, convergent Chebyshev collocation method. The influence of selected parameters on the dimensionless velocity, induced magnetic field, temperature, nanoparticle volume fraction and density of motile microorganisms as well as on the local skin friction, local Nusselt number, local Sherwood number and density of motile microorganism numbers is discussed and presented graphically. Validation with previously published results is performed and an excellent agreement is found. The study is relevant to electromagnetic manufacturing processes involving bio-nanofluids.


2014 ◽  
Vol 759 ◽  
pp. 197-235 ◽  
Author(s):  
Brice Lecampion ◽  
Dmitry I. Garagash

AbstractWe investigate in detail the problem of confined pressure-driven laminar flow of neutrally buoyant non-Brownian suspensions using a frictional rheology based on the recent proposal of Boyer et al. (Phys. Rev. Lett., vol. 107 (18), 2011, 188301). The friction coefficient (shear stress over particle normal stress) and solid volume fraction are taken as functions of the dimensionless viscous number $I$ defined as the ratio between the fluid shear stress and the particle normal stress. We clarify the contributions of the contact and hydrodynamic interactions on the evolution of the friction coefficient between the dilute and dense regimes reducing the phenomenological constitutive description to three physical parameters. We also propose an extension of this constitutive framework from the flowing regime (bounded by the maximum flowing solid volume fraction) to the fully jammed state (the random close packing limit). We obtain an analytical solution of the fully developed flow in channel and pipe for the frictional suspension rheology. The result can be transposed to dry granular flow upon appropriate redefinition of the dimensionless number $I$. The predictions are in excellent agreement with available experimental results for neutrally buoyant suspensions, when using the values of the constitutive parameters obtained independently from stress-controlled rheological measurements. In particular, the frictional rheology correctly predicts the transition from Poiseuille to plug flow and the associated particles migration with the increase of the entrance solid volume fraction. We also numerically solve for the axial development of the flow from the inlet of the channel/pipe toward the fully developed state. The available experimental data are in good agreement with our numerical predictions, when using an accepted phenomenological description of the relative phase slip obtained independently from batch-settlement experiments. The solution of the axial development of the flow notably provides a quantitative estimation of the entrance length effect in a pipe for suspensions when the continuum assumption is valid. Practically, the latter requires that the predicted width of the central (jammed) plug is wider than one particle diameter. A simple analytical expression for development length, inversely proportional to the gap-averaged diffusivity of a frictional suspension, is shown to encapsulate the numerical solution in the entire range of flow conditions from dilute to dense.


2020 ◽  
pp. 108128652096283
Author(s):  
İ Çömez ◽  
Y Alinia ◽  
MA Güler ◽  
S El-Borgi

In this paper, the nonlinear partial slip contact problem between a monoclinic half plane and a rigid punch of an arbitrary profile subjected to a normal load is considered. Applying Fourier integral transform and the appropriate boundary conditions, the mixed-boundary value problem is reduced to a set of two coupled singular integral equations, with the unknowns being the contact stresses under the punch in addition to the stick zone size. The Gauss–Chebyshev discretization method is used to convert the singular integral equations into a set of nonlinear algebraic equations, which are solved with a suitable iterative algorithm to yield the lengths of the stick zone in addition to the contact pressures. Following a validation section, an extensive parametric study is performed to illustrate the effects of material anisotropy on the contact stresses and length of the stick zone for typical monoclinic fibrous composite materials.


Sign in / Sign up

Export Citation Format

Share Document