Extracting Rolling Element Bearing Faults From Noisy Vibration Signal Using Kalman Filter

2014 ◽  
Vol 136 (3) ◽  
Author(s):  
Sidra Khanam ◽  
J. K. Dutt ◽  
N. Tandon

Vibration analysis has been widely accepted as a common and reliable method for bearing fault identification, however, the presence of noise in the measured signal poses the maximum amount of difficulty. Therefore, for the clearer detection of defect frequencies related to bearing faults, a denoising technique based on the Kalman filtering algorithm is presented in this paper. The Kalman filter yields a linear, unbiased, and minimum mean error variance recursive algorithm to optimally estimate the unknown states of a dynamic system from noisy data taken at discrete real time intervals. The dynamics of a rotor bearing system is presented through a linear model, where displacement and velocity vectors are chosen as states of the system. Process noise and measurement noise in the equations of motion take into account the modeling inaccuracies and vibration from other sources, respectively. The covariance matrix of the process noise has been obtained through the transfer function approach. The efficiency of the proposed technique is validated through experiments. Periodic noise and random noises obeying the white Gaussian, colored Gaussian and non-Gaussian distribution have been simulated and mixed with a clean experimental signal in order to study the efficiency of the standard Kalman filter under various noisy environments. Additionally, external vibrations to the test rig have been imparted through an electromechanical shaker. The results indicate an improvement in the signal to noise ratio, resulting in the clear identification of characteristic defect frequencies after passing the signal through the Kalman filter. The authors find that there is sufficient potential in using the Kalman filter as an effective tool to denoise the bearing vibration signal.

2011 ◽  
Vol 291-294 ◽  
pp. 1469-1473
Author(s):  
Wei Ke ◽  
Yong Xiang Zhang ◽  
Lin Li

Vibration signal of rolling-element bearing is random cyclostationarity when a fault develops, the proper analysis of which can be used for condition monitor. Cyclic spectrum is a common cyclostationary analysis method and has a great many algorithms which have distinct efficiency in different application circumstance, two common algorithms (SSCA and FAM) are compared in the paper. The FAM is recommended to be used in diagnosing rolling-element bearing fault via calculation of simulation signal in different signal to noise ratio. The cyclic spectrum of practice signal of rolling-element bearing with inner-race point defect is analyzed and a new characteristic extraction method is put forward. The preferable result is acquired verify the correctness of the analysis and indicate that the cyclic spectrum is a robust method in diagnosing rolling-element bearing fault.


2018 ◽  
Vol 17 (5) ◽  
pp. 1192-1212 ◽  
Author(s):  
Faris Elasha ◽  
Matthew Greaves ◽  
David Mba

Helicopter gearboxes significantly differ from other transmission types and exhibit unique behaviours that reduce the effectiveness of traditional fault diagnostics methods. In addition, due to lack of redundancy, helicopter transmission failure can lead to catastrophic accidents. Bearing faults in helicopter gearboxes are difficult to discriminate due to the low signal-to-noise ratio in the presence of gear vibration. In addition, the vibration response from the planet gear bearings must be transmitted via a time-varying path through the ring gear to externally mounted accelerometers, which cause yet further bearing vibration signal suppression. This research programme has resulted in the successful proof of concept of a broadband wireless transmission sensor that incorporates power scavenging while operating within a helicopter gearbox. In addition, this article investigates the application of signal separation techniques in detection of bearing faults within the epicyclic module of a large helicopter (CS-29) main gearbox using vibration and acoustic emissions. It compares their effectiveness for various operating conditions. Three signal processing techniques, including an adaptive filter, spectral kurtosis and envelope analysis, were combined for this investigation. In addition, this research discusses the feasibility of using acoustic emission for helicopter gearbox monitoring.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Vijay G. S. ◽  
Kumar H. S. ◽  
Srinivasa Pai P. ◽  
Sriram N. S. ◽  
Raj B. K. N. Rao

The wavelet based denoising has proven its ability to denoise the bearing vibration signals by improving the signal-to-noise ratio (SNR) and reducing the root-mean-square error (RMSE). In this paper seven wavelet based denoising schemes have been evaluated based on the performance of the Artificial Neural Network (ANN) and the Support Vector Machine (SVM), for the bearing condition classification. The work consists of two parts, the first part in which a synthetic signal simulating the defective bearing vibration signal with Gaussian noise was subjected to these denoising schemes. The best scheme based on the SNR and the RMSE was identified. In the second part, the vibration signals collected from a customized Rolling Element Bearing (REB) test rig for four bearing conditions were subjected to these denoising schemes. Several time and frequency domain features were extracted from the denoised signals, out of which a few sensitive features were selected using the Fisher’s Criterion (FC). Extracted features were used to train and test the ANN and the SVM. The best denoising scheme identified, based on the classification performances of the ANN and the SVM, was found to be the same as the one obtained using the synthetic signal.


Author(s):  
Ruqiang Yan ◽  
Robert X. Gao ◽  
Kang B. Lee ◽  
Steven E. Fick

This paper presents a noise reduction technique for vibration signal analysis in rolling bearings, based on local geometric projection (LGP). LGP is a non-linear filtering technique that reconstructs one dimensional time series in a high-dimensional phase space using time-delayed coordinates, based on the Takens embedding theorem. From the neighborhood of each point in the phase space, where a neighbor is defined as a local subspace of the whole phase space, the best subspace to which the point will be orthogonally projected is identified. Since the signal subspace is formed by the most significant eigen-directions of the neighborhood, while the less significant ones define the noise subspace, the noise can be reduced by converting the points onto the subspace spanned by those significant eigen-directions back to a new, one-dimensional time series. Improvement on signal-to-noise ratio enabled by LGP is first evaluated using a chaotic system and an analytically formulated synthetic signal. Then analysis of bearing vibration signals is carried out as a case study. The LGP-based technique is shown to be effective in reducing noise and enhancing extraction of weak, defect-related features, as manifested by the multifractal spectrum from the signal.


Author(s):  
Yan Shen ◽  
Yang Xu ◽  
Xiaowei Sheng ◽  
Xianbo Yin

Micro-vibrations on-board a satellite have degrading effects on the performance of certain payloads like observation cameras. The major sources of vibrations include momentum wheels, solar array drives, other rotary mechanical equipment, etc. These vibrations result in loss of the pointing precision and image quality of the payload through intricate transfer paths. To improve the accuracy of a satellite system with many vibration sources and complex transfer paths, it is necessary to determine the main transfer path of vibration. In this study, a path identification method is proposed and applied to the transfer system from the momentum wheel to the camera mount. First, the observer/Kalman filter identification (OKID) algorithm is used to acquire the state-space equation of each path subsystem. Then, the subsystem order is obtained based on the slope of the singular entropy increment. In the next phase, combined with the measured disturbance force of the momentum wheel, the displacement response of the target point is predicted. Finally, the dominant transfer path of vibration is achieved by calculating the vibration contribution of each path to the response point. The results indicate that the dominant transfer path is the axial path of the horizontal momentum wheel, which contributes to the vibration of the camera mount at most. Effective vibration reduction measures should be taken to this path to suppress the vibration signal. In comparing the identified displacement response with the finite element response of the camera mount under different noise conditions, the correlation coefficients are >0.85, which proves the accuracy and anti-noise capability of the identification method.


Author(s):  
Chaodong Zhang ◽  
Jian’an Li ◽  
Youlin Xu

Previous studies show that Kalman filter (KF)-based dynamic response reconstruction of a structure has distinct advantages in the aspects of combining the system model with limited measurement information and dealing with system model errors and measurement Gaussian noises. However, because the recursive KF aims to achieve a least-squares estimate of state vector by minimizing a quadratic criterion, observation outliers could dramatically deteriorate the estimator’s performance and considerably reduce the response reconstruction accuracy. This study addresses the KF-based online response reconstruction of a structure in the presence of observation outliers. The outlier-robust Kalman filter (OKF), in which the outlier is discerned and reweighted iteratively to achieve the generalized maximum likelihood (ML) estimate, is used instead of KF for online dynamic response reconstruction. The influences of process noise and outlier duration to response reconstruction are investigated in the numerical study of a simple 5-story frame structure. The experimental work on a simply-supported overhanging steel beam is conducted to testify the effectiveness of the proposed method. The results demonstrate that compared with the KF-based response reconstruction, the proposed OKF-based method is capable of dealing with the observation outliers and producing more accurate response construction in presence of observation outliers.


2011 ◽  
Vol 139 (6) ◽  
pp. 2008-2024 ◽  
Author(s):  
Brian C. Ancell ◽  
Clifford F. Mass ◽  
Gregory J. Hakim

Abstract Previous research suggests that an ensemble Kalman filter (EnKF) data assimilation and modeling system can produce accurate atmospheric analyses and forecasts at 30–50-km grid spacing. This study examines the ability of a mesoscale EnKF system using multiscale (36/12 km) Weather Research and Forecasting (WRF) model simulations to produce high-resolution, accurate, regional surface analyses, and 6-h forecasts. This study takes place over the complex terrain of the Pacific Northwest, where the small-scale features of the near-surface flow field make the region particularly attractive for testing an EnKF and its flow-dependent background error covariances. A variety of EnKF experiments are performed over a 5-week period to test the impact of decreasing the grid spacing from 36 to 12 km and to evaluate new approaches for dealing with representativeness error, lack of surface background variance, and low-level bias. All verification in this study is performed with independent, unassimilated observations. Significant surface analysis and 6-h forecast improvements are found when EnKF grid spacing is reduced from 36 to 12 km. Forecast improvements appear to be a consequence of increased resolution during model integration, whereas analysis improvements also benefit from high-resolution ensemble covariances during data assimilation. On the 12-km domain, additional analysis improvements are found by reducing observation error variance in order to address representativeness error. Removing model surface biases prior to assimilation significantly enhances the analysis. Inflating surface wind and temperature background error variance has large impacts on analyses, but only produces small improvements in analysis RMS errors. Both surface and upper-air 6-h forecasts are nearly unchanged in the 12-km experiments. Last, 12-km WRF EnKF surface analyses and 6-h forecasts are shown to generally outperform those of the Global Forecast System (GFS), North American Model (NAM), and the Rapid Update Cycle (RUC) by about 10%–30%, although these improvements do not extend above the surface. Based on these results, future improvements in multiscale EnKF are suggested.


Sign in / Sign up

Export Citation Format

Share Document