Linear Variable-Stiffness Mechanisms Based on Preloaded Curved Beams

2014 ◽  
Vol 136 (12) ◽  
Author(s):  
Yi-Syuan Wu ◽  
Chao-Chieh Lan

A machine with an internal variable-stiffness mechanism can adapt its output force to the working environment. In the literature, linear variable-stiffness mechanisms (LVSMs) are rarer than those producing rotary motion. This paper presents the design of a class of novel LVSMs. The idea is to parallel connect two lateral curved beams with an axial spring. Through preload adjustment of the curved beams, the output force-to-displacement curves can exhibit different stiffness. The merit of the proposed LVSMs is that very large-stiffness variation can be achieved in a compact space. The stiffness can even be tuned to zero by assigning the appropriate stiffness to the axial spring. LVSMs with pinned curved beams and fixed curved beams are investigated. To achieve the largest stiffness variation with sufficient linearity, the effects of various parameters on the force curves are discussed. Techniques to scale an LVSM and change the equilibrium position are introduced to increase the usefulness of the proposed design. Finally, the LVSMs are experimentally verified through prototypes.

Actuators ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 269
Author(s):  
Tingchen Liao ◽  
Manivannan Sivaperuman Kalairaj ◽  
Catherine Jiayi Cai ◽  
Zion Tsz Ho Tse ◽  
Hongliang Ren

Actuators with variable stiffness have vast potential in the field of compliant robotics. Morphological shape changes in the actuators are possible, while they retain their structural strength. They can shift between a rigid load-carrying state and a soft flexible state in a short transition period. This work presents a hydraulically actuated soft actuator fabricated by a fully 3D printing of shape memory polymer (SMP). The actuator shows a stiffness of 519 mN/mm at 20 ∘C and 45 mN/mm at 50 ∘C at the same pressure (0.2 MPa). This actuator demonstrates a high stiffness variation of 474 mN/mm (10 times the baseline stiffness) for a temperature change of 30 ∘C and a large variation (≈1150%) in average stiffness. A combined variation of both temperature (20–50 ∘C) and pressure (0–0.2 MPa) displays a stiffness variation of 501 mN/mm. The pressure variation (0–0.2 MPa) in the actuator also shows a large variation in the output force (1.46 N) at 50 ∘C compared to the output force variation (0.16 N) at 20 ∘C. The pressure variation is further utilized for bending the actuator. Varying the pressure (0–0.2 MPa) at 20 ∘C displayed no bending in the actuator. In contrast, the same variation of pressure at 50 ∘C displayed a bending angle of 80∘. A combined variation of both temperature (20–50 ∘C) and pressure (0–0.2 MPa) shows the ability to bend 80∘. At the same time, an additional weight (300 g) suspended to the actuator could increase its bending capability to 160∘. We demonstrated a soft robotic gripper varying its stiffness to carry objects (≈100 g) using two individual actuators.


2019 ◽  
Vol 11 (5) ◽  
Author(s):  
Jue Yu ◽  
Yong Zhao ◽  
Genliang Chen ◽  
Yeqing Gu ◽  
Chao Wang ◽  
...  

This paper puts forward a linear variable stiffness joint (VSJ) based on the electromagnetic principle. The VSJ is constituted by an annular permanent magnet (PM) and coaxial cylindrical coil. The output force and stiffness are linearly proportional to the coil current. In consequence, the stiffness adjustment motor and mechanisms required by many common designs of VSJs are eliminated. A physical prototype of the electromagnetic VSJ is manufactured and tested. The results indicate that the prototype can achieve linear force-deflection characteristics and rapid stiffness variation response. Using an Arduino and H-bridge driver board, the electromagnetic compliance control system is developed in order to realize the precise control of the interaction force. The static force control error is no more than ±0.5 N, and the settling time can be controlled within only 40 ms. At last, an experiment of squeezing the raw egg is conducted. The experiment intuitively exhibits the performance of electromagnetic compliance in stable force control and keeping safe robot-environment interaction.


2020 ◽  
Vol 33 (1) ◽  
Author(s):  
Zhuang Zhang ◽  
Genliang Chen ◽  
Weicheng Fan ◽  
Wei Yan ◽  
Lingyu Kong ◽  
...  

Abstract Devices with variable stiffness are drawing more and more attention with the growing interests of human-robot interaction, wearable robotics, rehabilitation robotics, etc. In this paper, the authors report on the design, analysis and experiments of a stiffness variable passive compliant device whose structure is a combination of a reconfigurable elastic inner skeleton and an origami shell. The main concept of the reconfigurable skeleton is to have two elastic trapezoid four-bar linkages arranged in orthogonal. The stiffness variation generates from the passive deflection of the elastic limbs and is realized by actively switching the arrangement of the leaf springs and the passive joints in a fast, simple and straightforward manner. The kinetostatics and the compliance of the device are analyzed based on an efficient approach to the large deflection problem of the elastic links. A prototype is fabricated to conduct experiments for the assessment of the proposed concept. The results show that the prototype possesses relatively low stiffness under the compliant status and high stiffness under the stiff status with a status switching speed around 80 ms.


2019 ◽  
Vol 142 (6) ◽  
Author(s):  
Yu-Ling Kuo ◽  
Chao-Chieh Lan

Abstract Constant-force mechanisms (CFMs) can produce an almost invariant output force over a limited range of input displacement. Without using additional sensor and force controller, adjustable CFMs can passively produce an adjustable constant output force to interact with the working environment. In the literature, one-dimensional CFMs have been developed for various applications. This paper presents the design of a novel CFM that can produce adjustable constant force in two dimensions. Because an adjustable constant force can be produced in each radial direction, the proposed adjustable CFM can be used in applications that require two-dimensional force regulation. In this paper, the design formulation and simulation results are presented and discussed. Equations to minimize the output force variation are given to choose the design parameters optimally. A prototype of the two-dimensional CFM is tested to demonstrate the effectiveness and accuracy of adjustable force regulation. This novel CFM is expected to be used in machines or robots to interact friendly with the environment.


Author(s):  
Yuan Gao ◽  
Xiguang Huang ◽  
Ishan Singh Mann ◽  
Hai-Jun Su

Abstract In this paper, we present a novel compliant robotic gripper with three variable stiffness fingers. While the shape morphing of the grippers is cable-driven, the stiffness variation is enabled by layer jamming. The inherent flexibility makes compliant grippers suitable for tasks such as grasping soft and irregular objects. However, their relatively low load capacity due to low structural stiffness limits their applications. Variable stiffness robotic grippers have the potential to address this challenge as their stiffness can be tuned on demand based on the needs of tasks. Layer jamming is an emerging method for variable stiffness due to its advantages of light weight, simple and quick actuation. In our design, the compliant backbone of the fingers is made of 3d printed PLA material. Four thin film materials are attached to each side of the skeleton. The working process of the robotic gripper follows two basic steps. First, the compliant skeleton is bent to a desired shape by actuating a tension cable via a servo motor. Second, upon application of a negative pressure by a vacuum pump, the finger is stiffened up owing to the increasing of the friction between contact surfaces of layers preventing their relative movement. Since the structural stiffness of the fingers is increased, their load capacity will be increased proportionally. When the air pressure is sufficiently large, the morphed shape can even be locked (no slipping). Test for stiffness of individual finger and load capacity of the robotic gripper are conducted to validate capability of the design. The results showed a 69-fold increase in stiffness of individual finger and a 30-fold increase in gripper’s load capacity.


2004 ◽  
Author(s):  
Y. Du ◽  
A. M. Al-Jumaily

An experimental and theoretical investigation is conducted to study the dynamic response of a tracheal smooth muscle under isometric conditions. The stiffness variation due to external vibration is investigated experimentally using trachea smooth muscles from excised pigs. The finite element method is used to model the muscle as a 2-D strip with variable stiffness and subjected to an external excitation. The Cauchy’s first law is invoked to describe the motion and Galerkin’s method is used to develop the finite element formulation. Different boundary conditions are considered to simulate the vibration characteristics and to get realistic compatibility with actual muscle conditions. The model predicts the stiffness variation due to vibration that is observed experimentally. The main outcome from this investigation is the fact that smooth muscle contractions could be relaxed by tuning the excitation within predetermined frequencies.


Author(s):  
Philip Bonello ◽  
Michael J Brennan ◽  
Stephen J Elliott ◽  
Julian F.V Vincent ◽  
George Jeronimidis

An adaptive tuned vibration absorber (ATVA) with a smart variable stiffness element is capable of retuning itself in response to a time-varying excitation frequency, enabling effective vibration control over a range of frequencies. This paper discusses novel methods of achieving variable stiffness in an ATVA by changing shape, as inspired by biological paradigms. It is shown that considerable variation in the tuned frequency can be achieved by actuating a shape change, provided that this is within the limits of the actuator. A feasible design for such an ATVA is one in which the device offers low resistance to the required shape change actuation while not being restricted to low values of the effective stiffness of the vibration absorber. Three such original designs are identified: (i) A pinned–pinned arch beam with fixed profile of slight curvature and variable preload through an adjustable natural curvature; (ii) a vibration absorber with a stiffness element formed from parallel curved beams of adjustable curvature vibrating longitudinally; (iii) a vibration absorber with a variable geometry linkage as stiffness element. The experimental results from demonstrators based on two of these designs show good correlation with the theory.


2007 ◽  
Vol 129 (4) ◽  
pp. 425-434 ◽  
Author(s):  
Xiangrong Shen ◽  
Michael Goldfarb

This paper proposes a new approach to the design of a robot actuator with physically variable stiffness. The proposed approach leverages the dynamic characteristics inherent in a pneumatic actuator, which behaves in essence as a series elastic actuator. By replacing the four-way servovalve used to control a typical pneumatic actuator with a pair of three-way valves, the stiffness of the series elastic component can be modulated independently of the actuator output force. Based on this notion, the authors propose a control approach for the simultaneous control of actuator output force and stiffness. Since the achievable output force and stiffness are coupled and configuration-dependent, the authors also present a control law that provides either maximum or minimum actuator output stiffness for a given displacement and desired force output. The general control and maximum/minimum stiffness approaches are experimentally demonstrated and shown to provide high fidelity control of force and stiffness, and additionally shown to provide a factor of 6 dynamic range in stiffness.


2021 ◽  
pp. 1-20
Author(s):  
Ryan Moore ◽  
Joseph Schimmels

Abstract Antagonistically actuated Variable Stiffness Actuators (VSAs) take inspiration from biological muscle structures to control both the stiffness and positioning of a joint. This paper presents the design of an elastic mechanism that utilizes a cable running through a set of three pulleys to displace a linear spring, yielding quadratic spring behavior in each actuator. A joint antagonistically actuated by two such mechanisms yields a linear relationship between force and deflection from a selectable equilibrium position. A quasi-static model is used to optimize the mechanism. Testing of the fabricated prototype yielded a good match to the desired elastic behavior.


Sign in / Sign up

Export Citation Format

Share Document