The Effects of Anisotropic Transport Coefficients on Pore Pressure in Shale Formations

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Vahid Dokhani ◽  
Mengjiao Yu ◽  
Stefan Z. Miska ◽  
James Bloys

This study investigates shale–fluid interactions through experimental approaches under simulated in situ conditions to determine the effects of bedding plane orientation on fluid flow through shale. Current wellbore stability models are developed based on isotropic conditions, where fluid transport coefficients are only considered in the radial direction. This paper also presents a novel mathematical method, which takes into account the three-dimensional coupled flow of water and solutes due to hydraulic, chemical, and electrical potential imposed by the drilling fluid and/or the shale formation. Numerical results indicate that the presence of microfissures can change the pore pressure distribution significantly around the wellbore and thus directly affect the mechanical strength of the shale.

2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Shanpo Jia ◽  
Caoxuan Wen ◽  
Fucheng Deng ◽  
Chuanliang Yan ◽  
Zhiqiang Xiao

Both overbalanced drilling and underbalanced drilling will lead to the change of pore pressure around wellbore. Existing research is generally based on hydraulic-mechanical (HM) coupling and assumes that pore pressure near the wellbore is initial formation pressure, which has great limitations. According to the coupled theory of mixtures for rock medium, a coupled thermal-hydraulic-mechanical (THM) model is proposed and derived, which is coded with MATLAB language and ABAQUS software as the solver. Then the wellbore stability is simulated with the proposed model by considering the drilling unloading, fluid flow, and thermal effects between the borehole and the formation. The effect of field coupling on pore pressure, stress redistribution, and temperature around a wellbore has been analyzed in detail. Through the study of wellbore stability in different conditions, it is found that (1) for overbalanced drilling, borehole with impermeable wall is more stable than that of ones with permeable wall and its stability can be improved by reducing the permeable ability of the wellbore wall; (2) for underbalanced drilling, the stability condition of permeable wellbore is much higher than that of impermeable wellbore; (3) the temperature has important influence on wellbore stability due to the variation of pore pressure and thermal stress; the wellbore stability can be improved with cooling drilling fluid for deep well. The present method can provide references for coupled thermal-hydraulic-mechanical-chemical (THMC) process analysis for wellbore.


2021 ◽  
Author(s):  
Michael Alexander Shaver ◽  
Gilles Pierre Michel Segret ◽  
Denya Pratama Yudhia ◽  
Suhail Mohammed Al Ameri ◽  
Erwan Couziqou ◽  
...  

Abstract Thin layering and micro-fracturing of the thin laminated layers are some possible reasons for the wellbore stability problems of the Nahr Umr shale. If the drilling fluid density is too low, collapsing of the borehole is possible, and if the drilling fluid density is too high, invasion of the shale can occur, weakening the shale, making boreholes prone to instability. These effects can be semi-quantified and assessed through the development of a geomechanical model. The application of a geomechanical model of a reservoir and overlaying formations can be very useful for addressing ways to select a sweet spot and optimize the completion and development of a reservoir. The geomechanical model also provides a sound basis for addressing unforeseen drilling and borehole stability problems that are encountered during the life cycle of a reservoir. Key components of any geomechanical model are the principal stresses at depth: overburden, minimum horizontal principle stress, and maximum horizontal principle stress. These determine the existing tectonic fault regime: normal, strike-slip, and reverse. Additional components of a geomechanical model are pore pressure, unconfined compressive strength (UCS) rock strength, tilted anisotropy, and fracture and faults from image logs and seismic. Unfortunately, models used to make continuous well logging depth-based stress predictions involve some parameters that are derived from laboratory tests, fracture injection tests, and the actual fracturing of a well—all contributing to the uncertainty of the model predictions. This paper addresses ways to obtain these key parameter components of the geomechanical model from well logging data calibrated to ancillary data. It is shown how stress, UCS, and pore pressure prediction and interpretation can be improved by developing and applying models using wellbore acoustic, triple combo, and borehole image data calibrated to laboratory and field measurements. The nahr umr shale and other organic mudstone formations exhibit vertical transverse isotropic (VTI) anisotropy in the sense that rock properties are different in the vertical and horizontal directions (assuming non-tilted flatbed layering), the horizontal acoustic velocity is different from that of vertical velocity. This necessitates the building of anisotropic moduli and stress models. The anisotropic stress models require lateral strain, which as shown in the paper, can be obtained from micro-frac tests and/or borehole breakout data.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Vahid Dokhani ◽  
Mengjiao Yu ◽  
Chao Gao ◽  
James Bloys

Routine measurement of hydraulic diffusivity of ultralow permeability rocks, such as shale, is a prolonged process. This study explores the effects of a sorptive characteristic of the porous medium on hydraulic diffusivities of shale rocks. The examined rock types include Mancos Shale, Catoosa Shale, Eagle Ford Shale, and core samples from the Gulf of Mexico. First, the adsorption isotherms of the selected shale rocks were obtained. Then, the hydraulic properties of the selected shale rocks were determined using Shale/Fluid Interaction Testing Cell, which employs pore pressure transmission technique. The experimental results show that the moisture content of shale is correlated with water activity using a multilayer adsorption theory. It is found that the adsorption isotherms of various shale formations can be scaled using their respective cation exchange capacity (CEC) into a single adsorption curve. Analyzing the transient pore pressure response in the downstream side of shale sample allows calculating the transport coefficients of shale samples. Hydraulic properties of shales are obtained by matching the pore pressure history with one-dimensional coupled fluid flow model. The experimental results indicate that sorptive properties can be inversely related to the hydraulic diffusivity of shale rocks. It is found that with an increase in the magnitude of sorption potential of shale, the hydraulic diffusivity decreases. This study is useful for shale characterization and provides a correlation, which can have various applications including, but not limited to, wellbore stability prediction during well planning.


2010 ◽  
Vol 82 (1) ◽  
pp. 195-222 ◽  
Author(s):  
Vinh X. Nguyen ◽  
Youname N. Abousleiman

The porochemoelectroelastic analytical models and solutions have been used to describe the response of chemically active and electrically charged saturated porous media such as clays, shales, and biological tissues. However, these attempts have been restricted to one-dimensional consolidation problems, which are very limited in practice and not general enough to serve as benchmark solutions for numerical validation. This work summarizes the general linear porochemoelectroelastic formulation and presents the solution of an inclined wellbore drilled in a fluid-saturated chemically active and ionized formation, such as shale, and subjected to a three-dimensional in-situ state of stress. The analytical solution to this geometry incorporates the coupled solid deformation and simultaneous fluid/ion flows induced by the combined influences of pore pressure, chemical potential, and electrical potential gradients under isothermal conditions. The formation pore fluid is modeled as an electrolyte solution comprised of a solvent and one type of dissolved cation and anion. The analytical approach also integrates into the solution the quantitative use of the cation exchange capacity (CEC) commonly obtained from laboratory measurements on shale samples. The results for stresses and pore pressure distributions due to the coupled electrochemical effects are illustrated and plotted in the vicinity of the inclined wellbore and compared with the classical porochemoelastic and poroelastic solutions.


2016 ◽  
Vol 53 (9) ◽  
pp. 1450-1459 ◽  
Author(s):  
Sherif A.Y. Akl ◽  
Andrew J. Whittle

Production of oil from shallow reservoirs typically involves drilling highly deviated wells through unconsolidated (or poorly lithified) rocks or clays. This paper describes numerical analyses of the deformations and stability of deviated wellbores within a K0-consolidated clay. The analyses consider planar deformations in the plane orthogonal to the wellbore using a quasi three-dimensional (3D) finite element model that represents coupled flow and deformations within the soil mass. Cross-anisotropic mechanical properties of the clay are described by a generalized effective stress model, MIT-E3, with parameters previously calibrated from laboratory thick-walled cylinder tests. The analyses compute the relationship between the drilling mud pressure and wellbore stability associated with either the onset of localized failure mechanisms or large plastic deformations around the cavity. The results show that short-term, undrained stability requires mud pressures in excess of the in situ formation pore pressures for more highly deviated wellbores at inclinations greater than 45°. The analyses examine the mechanisms for further destabilization, due to consolidation within the formation, and how they are affected by drainage conditions at the wellbore wall. The results provide qualitative information for the design and control of drilling operations for deviated wellbores in unconsolidated formations.


2013 ◽  
Vol 765-767 ◽  
pp. 3151-3157
Author(s):  
Hui Zhang ◽  
Fang Jun Ou ◽  
Guo Qing Yin ◽  
Jing Bing Yi ◽  
Fang Yuan ◽  
...  

As most of sedimentary rocks are anisotropic, it is significant to research the impact of the anisotropy of strength on wellbore stability in drilling engineering. Particularly, in the Kuqa piedmont exploration area, the anisotropy of strength caused by various jointed surfaces, fracture surfaces and fault planes in formation cause the formation of several groups of weak low-intensity planes traversing borehole . These weak planes will become failure earlier than the rock body in the context of strong stress and high pore pressure, causing chipping, breakouts and sticking. If fractures have good permeability and drilling fluid column pressure is greater than pore pressure, loss may occur. The loss pressure would not be controlled by fracturing pressure and horizontal minimum principal stress, but it depends on the relationship between fracture occurrence and triaxial stress state. In the event of loss, the drilling fluid will flow into these weak structural planes, causing the decrease of friction between rocks and increase of wellbore instability. As a result, for strongly anisotropic formation, the collapse pressure and leakage pressure of weak planes are key factors for evaluating well drilling stability. In this study, according to the stability evaluation on the transversely isotropic rock mechanics in Keshen zone of Kuqa piedmont, the impacts of fracture development on wellbore instability is analyzed; relevant suggestions on engineering geology for the special pressure window in strong anisotropic formation are also put forward.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Fan Zhang ◽  
Houbin Liu ◽  
Yingfeng Meng ◽  
Shuai Cui ◽  
Haifeng Ye

The hard and brittle shale formation is prone to collapse and instability, and the penetration of drilling fluid along the bedding reduces the mechanical properties of rock near the borehole wall, resulting in serious downhole accidents. Therefore, in this paper, the geomechanical parameters of the reservoir in the Longmaxi formation of Jiaoshiba were determined by field hydraulic fracturing and laboratory experiments. Then, the stress distribution model of borehole wall under the condition of underbalanced seepage flow is established based on the experimental results obtained by mechanical experiments on underground cores. The instability zone of borehole wall under the condition of underbalance is calculated and analyzed. The results show that the two-way horizontal ground stress of the Longmaxi formation is higher than 2.2 MPa/100 m, and the original ground stress is high. Moreover, the mechanical parameters of the stratified shale stratum matrix and weak surface are significantly different. The cohesion (4.7 MPa) and the angle of internal friction (26.9°) of bedding plane are significantly lower than that of the matrix (7.77 MPa) and the angle of internal friction (46.7°). Hard and brittle shale is easy to be destroyed along the stratification. Under the condition of underbalanced seepage, the mechanical properties of borehole shale can be stable. It is found that when the borehole axis is vertically stratified, the collapse pressure is the lowest, while in other drilling directions, the drilling fluid density needs to be increased by 0.5 g/cm3 to maintain the borehole stability. With the increase of the inclination angle of bedding plane, the wall failure area increases. The results of this study can provide guidance and suggestions for drilling in Jiaoshiba block and other permeable hard and brittle shale formations.


2021 ◽  
Vol 87 (2) ◽  
Author(s):  
Germán Vogel ◽  
Hongming Zhang ◽  
Yongcai Shen ◽  
Shuyu Dai ◽  
Youwen Sun ◽  
...  

Spatial profiles of impurity emission measurements in the extreme ultraviolet (EUV) spectroscopic range in radiofrequency (RF)-heated discharges are combined with one-dimensional and three-dimensional transport simulations to study the effects of resonant magnetic perturbations (RMPs) on core impurity accumulation at EAST. The amount of impurity line emission mitigation by RMPs appears to be correlated with the ion Z for lithium, carbon, iron and tungsten monitored, i.e. stronger suppression of accumulation for heavier ions. The targeted effect on the most detrimental high-Z impurities suggests a possible advantage using RMPs for impurity control. Profiles of transport coefficients are calculated with the STRAHL one-dimensional impurity transport code, keeping $\nu /D$ fixed and using the measured spatial profiles of $\textrm{F}{\textrm{e}^{20 + }}$ , $\textrm{F}{\textrm{e}^{21 + }}$ and $\textrm{F}{\textrm{e}^{22 + }}$ to disentangle the transport coefficients. The iron diffusion coefficient ${D_{\textrm{Fe}}}$ increases from $1.0- 2.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ to $1.5- 3.0\;{\textrm{m}^2}\;{\textrm{s}^{ - 1}}$ from the core region to the edge region $(\rho \gt 0.5)$ after the onset of RMPs. Meanwhile, an inward pinch of iron convective velocity ${\nu _{\textrm{Fe}}}$ decreases in magnitude in the inner core region and increases significantly in the outer confined region, simultaneously contributing to preserving centrally peaked $\textrm{Fe}$ profiles and exhausting the impurities. The ${D_{\textrm{Fe}}}$ and ${\nu _{\textrm{Fe}}}$ variations lead to reduced impurity contents in the plasma. The three-dimensional edge impurity transport code EMC3-EIRENE was also applied for a case of RMP-mitigated high-Z accumulation at EAST and compared to that of low-Z carbon. The exhaust of ${\textrm{C}^{6 + }}$ toward the scrape-off layer accompanying an overall suppression of heavier ${\textrm{W}^{30 + }}$ is observed when using RMPs.


Sign in / Sign up

Export Citation Format

Share Document