Investigating the Relation Between Sorption Tendency and Hydraulic Properties of Shale Formations

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Vahid Dokhani ◽  
Mengjiao Yu ◽  
Chao Gao ◽  
James Bloys

Routine measurement of hydraulic diffusivity of ultralow permeability rocks, such as shale, is a prolonged process. This study explores the effects of a sorptive characteristic of the porous medium on hydraulic diffusivities of shale rocks. The examined rock types include Mancos Shale, Catoosa Shale, Eagle Ford Shale, and core samples from the Gulf of Mexico. First, the adsorption isotherms of the selected shale rocks were obtained. Then, the hydraulic properties of the selected shale rocks were determined using Shale/Fluid Interaction Testing Cell, which employs pore pressure transmission technique. The experimental results show that the moisture content of shale is correlated with water activity using a multilayer adsorption theory. It is found that the adsorption isotherms of various shale formations can be scaled using their respective cation exchange capacity (CEC) into a single adsorption curve. Analyzing the transient pore pressure response in the downstream side of shale sample allows calculating the transport coefficients of shale samples. Hydraulic properties of shales are obtained by matching the pore pressure history with one-dimensional coupled fluid flow model. The experimental results indicate that sorptive properties can be inversely related to the hydraulic diffusivity of shale rocks. It is found that with an increase in the magnitude of sorption potential of shale, the hydraulic diffusivity decreases. This study is useful for shale characterization and provides a correlation, which can have various applications including, but not limited to, wellbore stability prediction during well planning.

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
Vahid Dokhani ◽  
Mengjiao Yu ◽  
Stefan Z. Miska ◽  
James Bloys

This study investigates shale–fluid interactions through experimental approaches under simulated in situ conditions to determine the effects of bedding plane orientation on fluid flow through shale. Current wellbore stability models are developed based on isotropic conditions, where fluid transport coefficients are only considered in the radial direction. This paper also presents a novel mathematical method, which takes into account the three-dimensional coupled flow of water and solutes due to hydraulic, chemical, and electrical potential imposed by the drilling fluid and/or the shale formation. Numerical results indicate that the presence of microfissures can change the pore pressure distribution significantly around the wellbore and thus directly affect the mechanical strength of the shale.


2016 ◽  
Vol 20 (suppl. 3) ◽  
pp. 911-917 ◽  
Author(s):  
Xiang-Chao Shi ◽  
Xu Yang ◽  
Ying-Feng Meng ◽  
Gao Li

Maintaining wellbore stability involves significant challenges when drilling in low-permeability reactive shale formations. In the present study, a non-linear thermo-chemo-poroelastic model is provided to investigate the effect of chemical, thermal, and hydraulic gradients on pore pressure and stress distributions near the wellbores. The analysis indicates that when the solute concentration of the drilling mud is higher than that of the formation fluid, the pore pressure and the effective radial and tangential stresses decrease, and v. v. Cooling of the lower salinity formation decreases the pore pressure, radial and tangential stresses. Hole enlargement is the combined effect of shear and tensile failure when drilling in high-temperature shale formations. The shear and tensile damage indexes reveal that hole enlargement occurs in the vicinity of the wellbore at an early stage of drilling. This study also demonstrates that shale wellbore stability exhibits a time-delay effect due to changes in the pore pressure and stress. The delay time computed with consideration of the strength degradation is far less than that without strength degradation.


2021 ◽  
Vol 9 (1) ◽  
Author(s):  
Daniel Bohnsack ◽  
Martin Potten ◽  
Simon Freitag ◽  
Florian Einsiedl ◽  
Kai Zosseder

AbstractIn geothermal reservoir systems, changes in pore pressure due to production (depletion), injection or temperature changes result in a displacement of the effective stresses acting on the rock matrix of the aquifer. To compensate for these intrinsic stress changes, the rock matrix is subjected to poroelastic deformation through changes in rock and pore volume. This in turn may induce changes in the effective pore network and thus in the hydraulic properties of the aquifer. Therefore, for the conception of precise reservoir models and for long-term simulations, stress sensitivity of porosity and permeability is required for parametrization. Stress sensitivity was measured in hydrostatic compression tests on 14 samples of rock cores stemming from two boreholes of the Upper Jurassic Malm aquifer of the Bavarian Molasse Basin. To account for the heterogeneity of this carbonate sequence, typical rock and facies types representing the productive zones within the thermal reservoir were used. Prior to hydrostatic investigations, the hydraulic (effective porosity, permeability) and geomechanical (rock strength, dynamic, and static moduli) parameters as well as the microstructure (pore and pore throat size) of each rock sample were studied for thorough sample characterization. Subsequently, the samples were tested in a triaxial test setup with effective stresses of up to 28 MPa (hydrostatic) to simulate in-situ stress conditions for depths up to 2000 m. It was shown that stress sensitivity of the porosity was comparably low, resulting in a relative reduction of 0.7–2.1% at maximum effective stress. In contrast, relative permeability losses were observed in the range of 17.3–56.7% compared to the initial permeability at low effective stresses. Stress sensitivity coefficients for porosity and permeability were derived for characterization of each sample and the different rock types. For the stress sensitivity of porosity, a negative correlation with rock strength and a positive correlation with initial porosity was observed. The stress sensitivity of permeability is probably controlled by more complex processes than that of porosity, where the latter is mainly controlled by the compressibility of the pore space. It may depend more on the compaction of precedented flow paths and the geometry of pores and pore throats controlling the connectivity within the rock matrix. In general, limestone samples showed a higher stress sensitivity than dolomitic limestone or dolostones, because dolomitization of the rock matrix may lead to an increasing stiffness of the rock. Furthermore, the stress sensitivity is related to the history of burial diagenesis, during which changes in the pore network (dissolution, precipitation, and replacement of minerals and cements) as well as compaction and microcrack formation may occur. This study, in addition to improving the quality of input parameters for hydraulic–mechanical modeling, shows that hydraulic properties in flow zones largely characterized by less stiff, porous limestones can deteriorate significantly with increasing effective stress.


2001 ◽  
Author(s):  
M. Yu ◽  
G. Chen ◽  
M.E. Chenevert ◽  
M.M. Sharma

Geofluids ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-15 ◽  
Author(s):  
Jet-Chau Wen ◽  
Hong-Ru Lin ◽  
Tian-Chyi Jim Yeh ◽  
Yu-Li Wang ◽  
Keng-Li Lin ◽  
...  

This study investigated the hydraulic properties of the heterogeneous aquifers of an artificial island (Yunlin Offshore Industrial Park) in Taiwan. The research was based on the groundwater level response affected by tidal fluctuation using the hydraulic tomography (HT) to analyze the hydraulic diffusivity (α). Specifically, the power spectrum ratio of groundwater and tidal fluctuations derived from the Gelhar solution was used to estimate α in homogeneous aquifers; this, however, could not be applied in the artificial island. Next, the spatial distribution of the groundwater level response affected by tidal fluctuation was analyzed and found to be irregular, proving the existence of hydrogeological heterogeneity in the artificial island. Furthermore, the results of the estimated α using the HT showed low error and high correlation, 0.41 m2/hr and 0.83, respectively, between the optimal estimated heterogeneous and reference α fields in the synthetic aquifer. Last, the HT was used in the real tested scenario. By comparing the predicted groundwater levels of the optimal estimated heterogeneous α field and the observed groundwater levels of the real aquifer, it was found that the correlation was higher than 0.99. Therefore, the HT can be used to obtain the optimal estimated heterogeneous α field in the artificial island.


SPE Journal ◽  
2021 ◽  
pp. 1-11
Author(s):  
Zhiqi Zhong ◽  
Lionel Esteban ◽  
Reza Rezaee ◽  
Matthew Josh ◽  
Runhua Feng

Summary Applying the realistic cementation exponent (m) in Archie’s equation is critical for reliable fluid-saturation calculation from well logs in shale formations. In this study, the cementation exponent was determined under different confining pressures using a high-salinity brine to suppress the surface conductivity related to the cation-exchange capacity of clay particles. A total of five Ordovician shale samples from the Canning Basin, Australia, were used for this study. The shale samples are all illite-rich with up to 60% clay content. Resistivity and porosity measurements were performed under a series of confining pressures (from 500 to 8,500 psi). Nuclear magnetic resonance (NMR) was used to obtain porosity and pore-size distribution and to detect the presence of residual oil. The complex impedance of samples was determined at 1 kHz to verify the change in pore-size distribution using the POLARIS model (Revil and Florsch 2010). The variation of shale resistivity and the Archie exponent m at different pressures is caused by the closure of microfractures at 500 psi, the narrowing of mesopores/macropores between 500 and 3,500 psi, and the pore-throat reduction beyond 3,500 psi. This study indicates that unlike typical reservoirs, the Archie exponent m for shale is sensitive to depth of burial because of the soft nature of the shale pore system. An equation is developed to predict m under different pressures after microfracture closure. Our study provides recommended experimental procedures for the calculation of the Archie exponent m for shales, leading to improved accuracy for well-log interpretation within shale formations when using Archie-basedequations.


2021 ◽  
Author(s):  
Mohamed Elkhawaga ◽  
Wael A. Elghaney ◽  
Rajarajan Naidu ◽  
Assef Hussen ◽  
Ramy Rafaat ◽  
...  

Abstract Optimizing the number of casing strings has a direct impact on cost of drilling a well. The objective of the case study presented in this paper is the demonstration of reducing cost through integration of data. This paper shows the impact of high-resolution 3D geomechanical modeling on well cost optimization for the GS327 Oil field. The field is located in the Sothern Gulf of Suez basin and has been developed by 20 wells The conventional casing design in the field included three sections. In this mature field, especially with the challenge of reducing production cost, it is imperative to look for opportunites to optimize cost in drilling new wells to sustain ptoduction. 3D geomechanics is crucial for such cases in order to optimize the cost per barrel at the same time help to drill new wells safely. An old wellbore stability study did not support the decision-maker to merge any hole sections. However, there was not geomechanics-related problems recorded during the drilling the drilling of different mud weights. In this study, a 3D geomechanical model was developed and the new mud weight calculations positively affected the casing design for two new wells. The cost optimization will be useful for any future wells to be drilled in this area. This study documents how a 3D geomechanical model helped in the successful delivery of objectives (guided by an understanding of pore pressure and rock properties) through revision of mud weight window calculations that helped in optimizing the casing design and eliminate the need for an intermediate casing. This study reveals that the new calculated pore pressure in the GS327 field is predominantly hydrostatic with a minor decline in the reservoir pressure. In addition, rock strength of the shale is moderately high and nearly homogeneous, which helped in achieving a new casing design for the last two drilled wells in the field.


Author(s):  
Josimar A. Silva ◽  
Hannah Byrne ◽  
Andreas Plesch ◽  
John H. Shaw ◽  
Ruben Juanes

ABSTRACT The injection experiment conducted at the Rangely oil field, Colorado, was a pioneering study that showed qualitatively the correlation between reservoir pressure increases and earthquake occurrence. Here, we revisit this field experiment using a mechanistic approach to investigate why and how the earthquakes occurred. Using data collected from decades of field operations, we build a geological model for the Rangely oil field, perform reservoir simulation to history match pore-pressure variations during the experiment, and perform geomechanical simulations to obtain stresses at the main fault, where the earthquakes were sourced. As a viable model, we hypothesize that pressure diffusion occurred through a system of highly permeable fractures, adjacent to the main fault in the field, connecting the injection wells to the area outside of the injection interval where intense seismic activity occurred. We also find that the main fault in the field is characterized by a friction coefficient μ  ≈  0.7—a value that is in good agreement with the classical laboratory estimates conducted by Byerlee for a variety of rock types. Finally, our modeling results suggest that earthquakes outside of the injection interval were released tectonic stresses and thus should be classified as triggered, whereas earthquakes inside the injection interval were driven mostly by anthropogenic pore-pressure changes and thus should be classified as induced.


2021 ◽  
Author(s):  
Jose Francisco Consuegra

Abstract Accurate pore pressure prediction is required to determine reliable static mud weights and circulating pressures, necessary to mitigate the risk of influx, blowouts and borehole instability. To accurately estimate the pore pressure, the over-pressure mechanism has to be identified with respect to the geological environment. One of the most widely used methods for pore pressure prediction is based on Normal Compaction Trend Analysis, where the difference between a ‘normal trend' and log value of a porosity indicator log such as sonic or resistivity is used to estimate the pore pressure. This method is biased towards shales, which typically exhibit a strong relationship between porosity and depth. Overpressure in non-shale formations has to be estimated using a different method to avoid errors while predicting the pore pressure. In this study, a different method for pore pressure prediction has been performed by using the lateral transfer approach. Many offset wells were used to predict the pore pressure. Lateral transfer in the sand body was identified as the mechanism for overpressure. This form of overpressure cannot be identified by well logs, which makes the pore pressure prediction more complex. Building a 2D geomechanical model, using seismic data as an input and following an analysis methodology that considered three type of formation fluids - gas, oil and water in the sand body, all pore pressure gradients related to lateral transfer for the respective fluids were evaluated. This methodology was applied to a conventional reservoir in a field in Colombia and was helpful to select the appropriate mud weight and circulating pressure to mitigate drilling risks associated to this mechanism of overpressure. Seismic data was critical to identifying this type of overpressure mechanism and was one of the main inputs for building the geomechanical earth model. This methodology enables drilling engineers and geoscientists to confidently predict, assess and mitigate the risks posed by overpressure in non-shale formations where lateral transfer is the driving mechanism of overpressure. This will ensure a robust well plan and minimize drilling/well control hazards associated with this mode of overpressure.


Sign in / Sign up

Export Citation Format

Share Document