Ohmic Curing of Three-Dimensional Printed Silver Interconnects for Structural Electronics

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
David A. Roberson ◽  
Ryan B. Wicker ◽  
Eric MacDonald

Ohmic curing was utilized as a method to improve the conductivity of three-dimensional (3D) interconnects printed from silver-loaded conductive inks and pastes. The goal was to increase conductivity of the conductive path without inducing damage to the substrate. The 3D via/interconnect structure was routed within 3D polymeric substrates and had external and internal sections. The 3D structures were created by the additive manufacturing (AM) process of stereolithography (SL) and were designed to replicate manufacturing situations which are common in the fabrication of 3D structural electronics that involve a combination of AM and direct write (DW) processing steps. The photocurable resins the 3D substrates were made of possessed glass transition temperatures of 75 °C and 42 °C meaning that a nonthermal method to increase the conductivity of the printed traces was needed as the conductive inks tested in this study required oven cure temperatures greater than 100 °C to perform properly. Ohmic curing was shown to decrease the measured resistance of the via/interconnect structure without harming the substrate. Substrate damage was observed on thermally cured samples and was characterized by discoloration and scaling of the substrate. Resistance measurements of the via/interconnect structures revealed samples cured by the ohmic curing process performed equal or better than samples subjected to thermal curing. The work presented here demonstrates a method to overcome the thermal cure temperature limitations of polymeric substrates imposed on the processing parameters of conductive inks during the fabrication of 3D structural electronics and presents an example of overcoming a manufacturing process problem associated with this emerging technology. An ink selection process involving characterization of the compatibility of inks with the substrate material and the use of different inks for the via and interconnect sections was also discussed.

2014 ◽  
Vol 214 (9) ◽  
pp. 1935-1945 ◽  
Author(s):  
Amit J. Lopes ◽  
In Hwan Lee ◽  
Eric MacDonald ◽  
Rolando Quintana ◽  
Ryan Wicker

2011 ◽  
Vol 26 (5) ◽  
pp. 495-498
Author(s):  
Kun-Peng CAI ◽  
Jing-Bo SUN ◽  
Bo LI ◽  
Ji ZHOU

Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
Hamid Ait Said ◽  
Hassan Noukrati ◽  
Hicham Ben Youcef ◽  
Ayoub Bayoussef ◽  
Hassane Oudadesse ◽  
...  

Three-dimensional hydroxyapatite-chitosan (HA-CS) composites were formulated via solid-liquid technic and freeze-drying. The prepared composites had an apatitic nature, which was demonstrated by X-ray diffraction and Infrared spectroscopy analyses. The impact of the solid/liquid (S/L) ratio and the content and the molecular weight of the polymer on the composite mechanical strength was investigated. An increase in the S/L ratio from 0.5 to 1 resulted in an increase in the compressive strength for HA-CSL (CS low molecular weight: CSL) from 0.08 ± 0.02 to 1.95 ± 0.39 MPa and from 0.3 ± 0.06 to 2.40 ± 0.51 MPa for the HA-CSM (CS medium molecular weight: CSM). Moreover, the increase in the amount (1 to 5 wt%) and the molecular weight of the polymer increased the mechanical strength of the composite. The highest compressive strength value (up to 2.40 ± 0.51 MPa) was obtained for HA-CSM (5 wt% of CS) formulated at an S/L of 1. The dissolution tests of the HA-CS composites confirmed their cohesion and mechanical stability in an aqueous solution. Both polymer and apatite are assumed to work together, giving the synergism needed to make effective cylindrical composites, and could serve as a promising candidate for bone repair in the orthopedic field.


2007 ◽  
Vol 129 (6) ◽  
pp. 1028-1034 ◽  
Author(s):  
Liang Wang ◽  
Sergio Felicelli

A three-dimensional finite element model was developed to predict the temperature distribution and phase transformation in deposited stainless steel 410 (SS410) during the Laser Engineered Net Shaping (LENS™) rapid fabrication process. The development of the model was carried out using the SYSWELD software package. The model calculates the evolution of temperature in the part during the fabrication of a SS410 plate. The metallurgical transformations are taken into account using the temperature-dependent material properties and the continuous cooling transformation diagram. The ferritic and martensitic transformation as well as austenitization and tempering of martensite are considered. The influence of processing parameters such as laser power and traverse speed on the phase transformation and the consequent hardness are analyzed. The potential presence of porosity due to lack of fusion is also discussed. The results show that the temperature distribution, the microstructure, and hardness in the final part depend significantly on the processing parameters.


2016 ◽  
Vol 4 (11) ◽  
pp. 2211-2218 ◽  
Author(s):  
Marina N. Kirikova ◽  
Elena V. Agina ◽  
Alexander A. Bessonov ◽  
Alexey S. Sizov ◽  
Oleg V. Borshchev ◽  
...  

A novel approach for improving the printability and adhesion of silver inks on flexible and stretchable polymeric substrates is reported.


2021 ◽  
Vol 9 (4) ◽  
pp. 325-337
Author(s):  
Robert Z. Selden ◽  
Lauren N. Butaric ◽  
Kersten Bergstrom ◽  
Dennis Van Gerven

ABSTRACTThe production of three-dimensional (3D) digital meshes of surface and computed tomographic (CT) data has become widespread in morphometric analyses of anthropological and archaeological data. Given that processing methods are not standardized, this leaves questions regarding the comparability of processed and digitally curated 3D datasets. The goal of this study was to identify those processing parameters that result in the most consistent fit between CT-derived meshes and a 3D surface model of the same human mandible. Eight meshes, each using unique thresholding and smoothing parameters, were compared to assess whole-object deviations, deviations along curves, and deviations between specific anatomical features on the surface model when compared with the CT scans using a suite of comparison points. Based on calculated gap distances, the mesh that thresholded at “0” with an applied smoothing technique was found to deviate least from the surface model, although it is not the most biologically accurate. Results have implications for aggregated studies that employ multimodal 3D datasets, and caution is recommended for studies that enlist 3D data from websites and digital repositories, particularly if processing parameters are unknown or derived for studies with different research foci.


2013 ◽  
Vol 01 (01) ◽  
pp. 030-032
Author(s):  
Amit Sharma ◽  
Abhimanyu Singh Chauhan ◽  
Jagmohan Lal ◽  
Ravneet Kaur ◽  
Navreet Sandhu

AbstractTraditional materials utilized for dental applications have been selected based on their mechanical properties and ability to remain inert in vivo; this selection process has provided materials that satifisfy physiological loading conditions but do not duplicate the mechanical, chemical, and architectural properties of bone. The less than optimal surface properties of conventional materials have resulted in clinical complications that necessitate surgical removal of many such failed bone implants due to insufficient bonding to juxtaposed bone. Due to unique surface and mechanical properties, as well as the ability to simulate the three-dimensional architecture of physiological bone, one possible consideration for the next generation of orthopedic and dental implants with improved efficacy are nanophase materials.


Author(s):  
Hamidreza Alemohammad ◽  
Ehsan Toyserkani

The present paper is concerned with the analysis of the microstructural properties of silver micro-lines produced by Laser-Assisted Maskless Microdeposition (LAMM). LAMM is a laser based direct write method used in microscale layered manufacturing. In LAMM, liquid-suspended nanoparticles of a variety of materials are deposited in a layer-by-layer fashion and cured by a laser radiation. In this work, conductive micro-lines of silver with widths of 20 μm are fabricated, and their microstructures as well as electrical and mechanical properties are studied. Investigations show that the microstructures are affected by the laser power and the laser scanning velocity. To find the effect of laser processing parameters on the electrical performance of the samples, the conductivity of the samples are expressed in terms of the effective energy absorbed during laser radiation. It is shown that the conductivity of the sintered samples is increased up to 2 × 105 S.m−1 by raising the effective energy density. In addition, mechanical properties, i.e. modulus of elasticity of one of the fabricated samples are obtained using the nanoindentation test.


Sign in / Sign up

Export Citation Format

Share Document