A Modified Closed Form Energy Based Framework for Axial Isothermal-Mechanical Fatigue Life Assessment for Aluminum 6061-T6

2015 ◽  
Vol 137 (3) ◽  
Author(s):  
M.-H. Herman Shen ◽  
Sajedur R. Akanda

In the present investigation, the applicability of a previously developed closed form energy based framework to predict low cycle fatigue (LCF) life of aluminum 6061-T6 was extended from room temperature to elevated temperature. The three different elevated temperatures considered in the present investigation were 75 °C, 100 °C, and 125 °C which were below the creep activation temperature for aluminum 6061-T6. Like the room temperature life assessment framework, the elevated temperature life assessment framework involved computation of the Ramberg–Osgood cyclic parameters from the average plastic strain range and the average plastic energy obtained from an axial isothermal-mechanical fatigue (IMF) test. The temperature dependent cyclic parameters were computed for 25 °C (room temperature), 75 °C, and 100 °C and then extrapolated to 125 °C utilizing functions describing the dependence of the cyclic parameters on temperature. For aluminum 6061-T6, the cyclic parameters were found to decrease with increase of temperature in a quadratic fashion. Furthermore, the present energy based axial IMF framework was found to be able to predict the LCF life of aluminum 6061-T6 at both room and elevated temperatures with excellent accuracy.

2011 ◽  
Vol 261-263 ◽  
pp. 416-420 ◽  
Author(s):  
Fu Ping Jia ◽  
Heng Lin Lv ◽  
Yi Bing Sun ◽  
Bu Yu Cao ◽  
Shi Ning Ding

This paper presents the results of elevated temperatures on the compressive of high fly ash content concrete (HFCC). The specimens were prepared with three different replacements of cement by fly ash 30%, 40% and 50% by mass and the residual compressive strength was tested after exposure to elevated temperature 250, 450, 550 and 650°C and room temperature respectively. The results showed that the compressive strength apparently decreased with the elevated temperature increased. The presence of fly ash was effective for improvement of the relative strength, which was the ratio of residual compressive strength after exposure to elevated temperature and ordinary concrete. The relative compressive strength of fly ash concrete was higher than those of ordinary concrete. Based on the experiments results, the alternating simulation formula to determine the relationship among relative strength, elevated temperature and fly ash replacement is developed by using regression of results, which provides the theoretical basis for the evaluation and repair of HFCC after elevated temperature.


2021 ◽  
pp. 146-166
Author(s):  
Arun Sreeranganathan ◽  
Douglas L. Marriott

Abstract This article provides some new developments in elevated-temperature and life assessments. It is aimed at providing an overview of the damage mechanisms of concern, with a focus on creep, and the methodologies for design and in-service assessment of components operating at elevated temperatures. The article describes the stages of the creep curve, discusses processes involved in the extrapolation of creep data, and summarizes notable creep constitutive models and continuum damage mechanics models. It demonstrates the effects of stress relaxation and redistribution on the remaining life and discusses the Monkman-Grant relationship and multiaxiality. The article further provides information on high-temperature metallurgical changes and high-temperature hydrogen attack and the steps involved in the remaining-life prediction of high-temperature components. It presents case studies on heater tube creep testing and remaining-life assessment, and pressure vessel time-dependent stress analysis showing the effect of stress relaxation at hot spots.


Author(s):  
Y. Huang ◽  
J. Huang ◽  
J. Cao

Magnesium alloy sheet has received increasing attention in automotive and aerospace industries. It is widely recognized that magnesium sheet has a poor formability at room temperature. While at elevated temperature, its formability can be dramatically improved. Most of work in the field has been working with the magnesium sheet after annealed around 350°C. In this paper, the as-received commercial magnesium sheet (AZ31B-H24) with thickness of 2mm has been experimentally studied without any special heat treatment. Uniaxial tensile tests at room temperature and elevated temperature were first conducted to have a better understanding of the material properties of magnesium sheet (AZ31B-H24). Then, limit dome height (LDH) tests were conducted to capture forming limits of magnesium sheet (AZ31B-H24) at elevated temperatures. An optical method has been introduced to obtain the stress-strain curve at elevated temperatures. Experimental results of the LDH tests were presented.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1033 ◽  
Author(s):  
Roman Aigner ◽  
Christian Garb ◽  
Martin Leitner ◽  
Michael Stoschka ◽  
Florian Grün

This paper contributes to the effect of elevated temperature on the fatigue strength of common aluminum cast alloys EN AC-46200 and EN AC-45500. The examination covers both static as well as cyclic fatigue investigations to study the damage mechanism of the as-cast and post-heat-treated alloys. The investigated fracture surfaces suggest a change in crack origin at elevated temperature of 150 ∘ C. At room temperature, most fatigue tests reveal shrinkage-based micro pores as their crack initiation, whereas large slipping areas occur at elevated temperature. Finally, a modified a r e a -based fatigue strength model for elevated temperatures is proposed. The original a r e a model was developed by Murakami and uses the square root of the projected area of fatigue fracture-initiating defects to correlate with the fatigue strength at room temperature. The adopted concept reveals a proper fit for the fatigue assessment of cast Al-Si materials at elevated temperatures; in detail, the slope of the original model according to Murakami should be decreased at higher temperatures as the spatial extent of casting imperfections becomes less dominant at elevated temperatures. This goes along with the increased long crack threshold at higher operating temperature conditions.


Author(s):  
John Wertz ◽  
M.-H. Herman Shen ◽  
Onome Scott-Emuakpor ◽  
Tommy George ◽  
Charles Cross

An energy-based fatigue lifing procedure for the determination of full-life and critical-life of in-service structures subjected to axial isothermal-mechanical fatigue (IMF) has been developed. The foundation of this procedure is the energy-based axial room-temperature fatigue model, which states: the total strain energy density accumulated during both a monotonic fracture event and a fatigue process is the same material property. The energy-based axial IMF lifing framework is composed of the following entities: (1) the development of an axial IMF testing capability; (2) the creation of a testing procedure capable of assessing the strain energy accrued during both a monotonic fracture process and a fatigue process at various elevated temperatures; and (3), the incorporation of the effect of temperature into the axial fatigue lifing model. Both an axial IMF capability and a detailed testing procedure were created. The axial IMF capability was employed in conjunction with the monotonic fracture curve testing procedure to produce fifteen fracture curves at four operating temperatures. The strain energy densities for these fracture curves were compared, leading to the assumption of constant monotonic fracture energy at operating temperatures below the creep activation temperature.


1988 ◽  
Vol 110 (4) ◽  
pp. 646-652 ◽  
Author(s):  
Peter J. Blau ◽  
Charles E. DeVore

Nickel aluminide alloys are ordered intermetallic compounds which show promise for elevated temperature applications, some of which involve sliding contact. The present investigation was conducted to develop an initial understanding of the unlubricated sliding behavior of a nickel aluminide alloy at room and elevated temperatures. In particular, the variations in the friction coefficient and the wear track morphology during the break-in stage and subsequent transitions were studied. Pin-on-disk experiments were conducted at room temperature and at 650° C (923° K) in air using fixed 9.5 mm diameter polycrystalline alumina balls as the pin material. To provide a comparison in behavior, nickel (Ni-200) disks were tested under the same conditions. The sliding friction coefficient of alumina on nickel aluminide was considerably higher than that for alumina on nickel at room temperature, but it was only slightly higher at 650° C. The wear was similar for both materials at room temperature, but the nickel aluminide exhibited relatively mild wear at 650° C, displaying less severe surface damage than the nickel. Work on identifying key friction and wear mechanisms and on evaluating the temperature limitations for future applications will continue.


Author(s):  
Zhiyuan Han ◽  
Guoshan Xie ◽  
Zengchao Wang ◽  
Jianzhong Yin ◽  
Jin Shi

Abstract Coke drums are critical equipments in delayed coking plants, which are operated under severe thermal-mechanical conditions by cyclic heating and quenching processes. Cracks are usually developed during service because of severe plastic deformation and low-cycle fatigue. Thus, the assessment of the deformation severity and remaining life is important for safety operating of the coke drums. This study investigated the bulging damage and fatigue life of 6 coke drums after 16 years and 22 years of service in China. A thermal-mechanical fatigue test were first performed to simulate complex loading condition experienced by the coke drum. The thermal-mechanical fatigue life curve of the fabrication material was obtained. Then, a internal laser scanning was employed to measure the deformation and bulges of drum shells. The finite element analysis was developed to calculate the cyclic stress and strain and bulging severity based on the laser mapping and operating conditions. The fatigue life of the coke drum was assessed by the Coffin-Manson-Basquin’s relationship. The life evaluation results of different methods were compared and analyzed. The results showed that a reasonable life of the coke drum can be obtained by using the thermal-mechanical fatigue properties and laser scanning approach.


Sign in / Sign up

Export Citation Format

Share Document