Experimental Assessment of Laser Textured Cutting Tools in Dry Cutting of Aluminum Alloys

Author(s):  
Youqiang Xing ◽  
Jianxin Deng ◽  
Xingsheng Wang ◽  
Kornel Ehmann ◽  
Jian Cao

To improve the friction conditions and reduce adhesion at the tool's rake face in dry cutting of aluminum alloys, three types of laser surface textures were generated on the rake face of cemented carbide tools. Orthogonal dry cutting tests on 6061 aluminum alloy tubes were carried out with the textured and conventional tools (CT). The effect of the texture geometry on the cutting performance was assessed in terms of cutting forces, friction coefficient, chip compression ratio, shear angle, tool adhesions, chip morphology, and machined surface quality. The results show that the textured tools can improve the cutting performance at low cutting speeds, and that the tool with rectangular type of textures is the most effective.

Author(s):  
Xin Tong ◽  
Yanxiang Ren ◽  
Jianing Shen ◽  
Song Yu

Most of the researches on the properties of micro-textured tools are based on an orthogonal test, while the interaction between micro-textured parameters is ignored. Therefore, this thesis is based on an interaction test to study the cutting performance of cutting tools. According to the chip morphology obtained from the interactive test, the micro texture diameter of 60 μm is obtained when the cutting is stable. It was also found that the synergistic effect of multiple mesoscopic geometric features had a significant influence on cutting performance. By analysis, we found the optimized parameters for the milling tool were D = 60 μm, l = 100 μm, l1 = 150 μm, r = 60 μm. Furthermore, prediction models of the cutting performance were established by univariate linear regression and the validity of these models was verified. Thus, this thesis provides a reference for improving the performance of cutting tools and for achieving efficient and high-quality machining of titanium alloys.


2018 ◽  
Vol 8 (8) ◽  
pp. 1353
Author(s):  
Tao Chen ◽  
Fei Gao ◽  
Suyan Li ◽  
Xianli Liu

Carbon fiber reinforced plastic (CFRP) is typically hard to process, because it is easy for it to generate processing damage such as burrs, tears, delamination, and so on in the machining process. Consequently, this restricts its wide spread application. This paper conducted a comparative experiment on the cutting performance of the two different-structure milling cutters, with a helical staggered edge and a rhombic edge, in milling carbon fiber composites; analyzed the wear morphologies of the two cutting tools; and thus acquired the effect of the tool structure on the machined surface quality and cutting force. The results indicated that in the whole cutting, the rhombic milling cutter with a segmented cutting edge showed better wear resistance and a more stable machined surface quality. It was not until a large area of coating shedding occurred, along with chip clogging, that the surface quality decreased significantly. At the stage of coating wear, the helical staggered milling cutter with an alternately arranged continuous cutting edge showed better machined surface quality, but when the coating fell off, its machined surface quality began to reveal damage such as groove, tear, and fiber pullout. Meanwhile, burrs occurred at the edge and the cutting force obviously increased. By contrast, for the rhombic milling cutter, both the surface roughness and cutting force increased relatively slowly.


Author(s):  
Tao Chen ◽  
Weijie Gao ◽  
Guangyue Wang ◽  
Xianli Liu

Torus cutters are increasingly used in machining high-hardness materials because of high processing efficiency. However, due to the large hardness variation in assembled hardened steel workpiece, the tool wear occurs easily in machining process. This severely affects the machined surface quality. Here, we conduct a research on the tool wear and the machined surface quality in milling assembled hardened steel mold with a torus cutter. The experimental results show the abrasive wear mechanism dominates the initial tool wear stage of the torus cutter. As the tool wear intensifies, the adhesive wear gradually occurs due to the effect of alternating stress and impact load. Thus, the mixing effect of the abrasive and adhesive wears further accelerates tool wear, resulting in occurrence of obvious crater wear band on the rake face and coating tearing area on the flank face. Finally, the cutter is damaged by the fatigue wear mechanism, reducing seriously the cutting performance. With increase of flank wear, moreover, there are increasingly obvious differences in both the surface morphology and the cutting force at the two sides of the joint seam of the assembled hardened steel parts, including larger height difference at the two sides of the joint seam and sudden change of cutting force, as a result, leading to decreasing cutting stability and deteriorating seriously machined surface quality.


2020 ◽  
Vol 14 (5-6) ◽  
pp. 733-742
Author(s):  
S. Böhm ◽  
A. Ahsan ◽  
J. Kröger ◽  
J. Witte

AbstractIn recent years surface texturing of the cutting tools has proved to improve tribological characteristics at tool/chip and tool/workpiece interface and help to reduce cutting and feed forces as well as tool wear. Most, if not all, of the studies have focused on subtractively made textures whereby the material is removed from the surface. This study investigates the performance of additively made surface structures whereby hard ceramic particles are dispersed in the form of dome shaped textures on the surface of the cutting tools using solid state millisecond pulsed laser (pulsed laser implantation). Dry cutting tests were performed on ductile cast iron. The results show a greater reduction of process forces with implantation of flank face as compared to rake face. Both cutting and feed forces were reduced by 10% compared to the non-structured tool. In addition, the tool life increased by a factor of 3 whereas the average flank wear reduced by as much as 80% and cutting edge rounding by up to 60%.


2012 ◽  
Vol 723 ◽  
pp. 365-370 ◽  
Author(s):  
Rong Bian ◽  
Eleonora Ferraris ◽  
Jun Qian ◽  
Dominiek Reynaerts ◽  
Liang Li ◽  
...  

This work presents an experimental investigation on micro-milling of fully sintered Zirconia (ZrO2) by diamond coated tools. The experiments were conducted on a Kern MMP 2522 micro-milling centre and WC micro end mills, diamond coated by chemical vapour deposition (CVD) and of stiff geometry were employed as cutting tools. The effects of cutting parameters and milling time on tool wear were investigated. The results revealed that the tool wear characters included diamond coating delamination and wear of substrate WC. Both cutting forces and machined surface quality were affected by tool wear with the progress of milling.


2011 ◽  
Vol 325 ◽  
pp. 309-314
Author(s):  
Han Lian Liu ◽  
Ming Hong ◽  
Chuan Zhen Huang ◽  
Bin Zou

TiC-based ceramic cutting tools with three different particle size levels of Al2O3 additives were fabricated and tested. Theses tool materials were identified as TA, TA10A5 and TA30A5 respectively in this study. Another commercial cutting material identified as LT55 was used in this study as baseline to investigate cutting performance by comparing the flank wear size. The experimental results showed that multi-scale nanocomposite ceramic tool TA10A5 had much better wear resistance than the other tools when turning at a lower speed. The wear mechanisms were mainly adhesive wear in the rake face. While cutting at a higher speed, the breakage failure occurred for the tools TA10A5 and TA30A5.


2010 ◽  
Vol 154-155 ◽  
pp. 973-976
Author(s):  
Jing He ◽  
Guang Sheng Ren

The technology of low temperature cool-air & minority of oil conditions (cool-air cutting technology) is employed to cut three materials— Steel 45, the alloy of titanium and 2WCrNi, then the results are contrasted with the normal cutting method. Firstly, Steel 45 and the alloy of titanium are tested with cool-air cutting and dry cutting method. Then 2WCrNi is tested by employing both cool-air cutting and oil solution cutting method. Finally, the effect of cool-air cutting technology on the life of cemented carbide tools is discussed after contrast test, and the impact of those methods on environment is also evaluated.


2021 ◽  
Author(s):  
Xu Wang ◽  
Valentin L. Popov ◽  
Zhanjiang Yu ◽  
Yiquan Li ◽  
Jingkai Xu ◽  
...  

Abstract In the micro cutting process of SiCp/Al composites, the tool wear is serious due to the existence of reinforcement phase in the material, which greatly affects the machined surface integrity. In order to reduce the friction and adhesion at the tool-chip interface, fabricating micro texture on the tool surface could be a feasible solution. This work focuses on the study of the cutting performance of the textured cutting tools through micro cutting of SiCp/Al composites. The experiments were carried out using NTK-KM1CCGW060202H uncoated cemented carbide tools with micro-hole textures developed by pulsed fiber laser. The results indicate that the micro-textured tools can reduce the wear, sticking and the contact length between the tool-chip. Also, the surface quality can be improved. It is observed from the chip’s surface that the micro-textured tool can produce secondary cutting when machining SiCp/Al composite materials, the smaller the texture spacing, the more obvious the secondary cutting phenomenon. Furthermore, the cutting forces can be reduced using the micro-textured tool in most cases. However, when the texture spacing is too small the cutting force does not decrease. Finally, the surface roughness and surface residual stress of the machined workpiece are investigated. Textured tools have better results.


Author(s):  
Minghua Pang ◽  
Xiaojun Liu ◽  
Kun Liu

Purpose This study aimed to clarify the influence mechanism of conical micro-grooved texture on the tool–chip friction property and cutting performance of WC-TiC/Co cemented carbide tools under flood lubrication conditions. Design/methodology/approach Conical micro-grooved texture was fabricated on the tool rake face using laser texture technology. Metal cutting tests were conducted on AISI 1045 steel with conventional and developed tools for various cutting speeds (80 m/min to 160 m/min) and conical angles of micro-grooved texture (2 ° to 5 °) under flood lubrication condition. The effect of conical micro-grooved texture on the tool cutting force, tool–chip friction coefficient, surface roughness of the machined workpiece, and wear of the tool rake face was determined. Findings Unlike the conventional tools, the conical micro-grooved tools successfully resulted in reductions in metal cutting force, tool–chip frictional coefficient, surface roughness of the machined workpiece, and wear of the tool rake face. These reductions were more noticeable than those of conventional tools with increases in the cutting speed and conical angle of the micro-grooved texture. Detailed research indicated that conical micro-grooved channel exhibits a directional motion characteristic of liquid, which accelerated the infiltration of cutting fluid at the tool–chip interface. Substantial cutting fluid was supplied and stored at the tool–chip interface for the conical micro-grooved tools. Therefore, the conical micro-grooved texture on the tool rake face showed evident advantages in improving tool–chip friction and tool cutting performance. Originality/value The main contribution of this study is proposing a new conical micro-grooved texture on the tool rake face, which improved tool–chip friction and tool cutting performance.


Author(s):  
Ayyankalai Muthuraja ◽  
Selvaraj Senthilvelan

Tungsten carbide cutting tools with and without solid lubricant (WC-10Co-5CaF2 and WC-10Co) were developed in-house via powder metallurgy. The developed cutting tools and a commercial WC-10Co cutting tool were used to machine cylindrical AISI 1020 steel material under dry conditions. The cutting force and average cutting tool temperature were continuously measured. The cutting tool flank surface and chip morphology after specific tool life (5 min of cutting) were examined to understand tool wear. The flank wear of the considered cutting tools was also measured to quantify the cutting tool life. The surface roughness of the workpiece was measured to determine the machining quality. The developed cutting tool with solid lubricant (WC-10Co-5CaF2) generated 20%–40% less cutting force compared to that of the developed cutting tool without solid lubricant (WC-10Co). In addition, the finish of the workpiece surface improved by 16%–20% when it was machined by the solid lubricant cutting tool. The cutting tool with solid lubricant (WC-10Co-5CaF2) exhibited a 15%–18% reduction in flank wear. Curlier and smaller saw tooth chips were generated from the WC-10Co-5CaF2 cutting tool, confirming that less heat was generated during the cutting process, and the finish of the machined surface was also improved.


Sign in / Sign up

Export Citation Format

Share Document