Application of Semi-Active Inerter in Semi-Active Suspensions Via Force Tracking

2016 ◽  
Vol 138 (4) ◽  
Author(s):  
Michael Z. Q. Chen ◽  
Yinlong Hu ◽  
Chanying Li ◽  
Guanrong Chen

This paper investigates the application of semi-active inerter in semi-active suspension. A semi-active inerter is defined as an inerter whose inertance can be adjusted within a finite bandwidth by online control actions. A force-tracking approach to designing semi-active suspension with a semi-active inerter and a semi-active damper is proposed in this paper. Two parts are required in the force-tracking strategy: a target active control law and a proper algorithm to adjust the inertance and the damping coefficient online to track the target active control law. The target active control law is derived based on the state-derivative feedback control methodology in the “reciprocal state-space” (RSS) framework, which has the advantage that it is straightforward to use the acceleration information in the controller design. The algorithm to adjust the inertance and the damping coefficient is to saturate the active control force between the maximal and the minimal achievable suspension forces of the semi-active suspension. Both a quarter-car model and a full-car model are considered in this paper. Simulation results demonstrate that the semi-active suspension with a semi-active inerter and a semi-active damper can track the target active control force much better than the conventional semi-active suspension (which only contains a semi-active damper) does. As a consequence, the overall performance in ride comfort, suspension deflection, and road holding is improved, which effectively demonstrates the necessity and the benefit of introducing semi-active inerter in vehicle suspension.

Author(s):  
Vikas Prasad ◽  
P. Seshu ◽  
Dnyanesh N. Pawaskar

Abstract In this paper, the design of the suspension system for Heavy Goods Vehicles (HGV) is proposed, which deals with two performance criteria simultaneously. A semi-tractor trailer is used in present work and modeled with half vehicle model. Four types of linear, as well as non-linear, passive and semi-active suspension systems, are presented in this work. The control law is proposed for the semi-active suspension system using a PID controller to remove the need for passive damper along with active damper. Two objective optimization is performed using the Non-dominated Sorting Genetic Algorithm II (NSGA-II). Road Damage (RD) is taken as the first objective along with Goods Damage (GD) as the second objective. All problems are minimization problems. It is concluded based on Pareto front comparison of different suspension systems that the semi-active suspension system with the proposed control law performs well for HGV.


2021 ◽  
Vol 1 (4) ◽  
pp. 501-522
Author(s):  
Erliana Samsuria ◽  
Yahaya M. Sam ◽  
Fazilah Hassan

This paper delivers findings on optimal robust control studies of nonlinear full car models. A nonlinear active suspension full car model is used, which considers the dynamic of a hydraulic actuator. The investigation on the benefit of using Sliding Mode Control (SMC) structure for the effective trade-off between road handling. The design of SMC in the chassis/internal subsystem is enhanced by modifying a sliding surface based on Proportional-Integral-Derivatives (PID) with the utilization of particle swarm optimization (PSO) algorithm in obtaining the best optimum value of control parameters. The switching control is designed through the Lyapunov function, which includes the boundedness of uncertainties in sprung masses that can guarantee the stability of the control design. The responses of the proposed controller have improved the disturbance rejection up to 60% as compared to the conventional SMC controller design and shown the high robustness to resist the effect of varying the parameter with minimal output deviations. The study proved that the proposed SMC scheme offers an overall effective performance in full car active suspension control to perform a better ride comfort as well as the road handling ability while maintaining a restriction of suspension travel. An intensive computer simulation (MATLAB Simulink) has been carried out to evaluate the effectiveness of the proposed control algorithm under various road surface conditions.


Author(s):  
Kazuhiko Hiramoto ◽  
Taichi Matsuoka ◽  
Katsuaki Sunakoda

As a method for semi-active control of structural systems, the active-control-based method that emulates the control force of a targeted active control law by semi-active control devices has been studied. In the active-control-based method, the semi-active control devices are not necessarily able to generate the targeted active control force because of the dissipative nature of those devices. In such a situation, the meaning of the targeted active control law becomes unclear in the sense of the control performance achieved by the resulting semi-active control system. In this study, a new semi-active control strategy that approximates the control output (not the control force) of the targeted active control is proposed. The variable parameter of the semi-active control device is selected at every time instant so that the predicted control output of the semi-active control system becomes close to the corresponding predicted control output of the targeted active control as much as possible. Parameters of the targeted active control law are optimized in the premise of the above “output emulation” strategy so that the control performance of the semi-active control becomes good and the “error” of the achieved control performance between the targeted active control and the semi-active control becomes small.


1995 ◽  
Vol 19 (4) ◽  
pp. 495-507 ◽  
Author(s):  
E. Esmailzadeh ◽  
H.D. Taghirad

An analytical investigation of a half-car model with passenger dynamics, subjected to random road disturbance, is performed. Two different methods of defining the performance index for optimal controller design are proposed. Nondeterministic inputs are applied to simulate the road surface conditions more realistically. Results obtained illustrate that using an optimal state-feedback controller, with passenger acceleration included in the performance index, would exhibit not only an improved passenger ride comfort, but also, a better road handling and stability.


2011 ◽  
Vol 308-310 ◽  
pp. 2266-2270
Author(s):  
Mouleeswaran Senthilkumar

This paper describes the development of a controller design for the active control of suspension system, which improves the inherent tradeoff among ride comfort, suspension travel and road-holding ability. The developed design allows the suspension system to behave differently in different operating conditions, without compromising on road-holding ability. The effectiveness of this control method has been explained by data from time domains. Proportional-Integral-Derivative (PID) controller including hydraulic dynamics has been developed. The displacement of hydraulic actuator and spool valve is also considered. The Ziegler – Nichols tuning rules are used to determine proportional gain, reset rate and derivative time of PID controller. Simulink diagram of active suspension system is developed and analysed using MATLAB software. The investigations on the performance of the developed active suspension system are demonstrated through comparative simulations in this paper.


2014 ◽  
Vol 592-594 ◽  
pp. 2165-2178 ◽  
Author(s):  
M.W. Trikande ◽  
Vinit V. Jagirdar ◽  
Muraleedharan Sujithkumar

Comparative performance of vehicle suspension system using passive, and semi-active control (on-off and continuous) has been carried out for a multi-axle vehicle under the source of road disturbance. Modelling and prediction for stochastic inputs from random road surface profiles has been carried out. The road surface is considered as a stationary stochastic process in time domain assuming constant vehicle speed. The road surface elevations as a function of time have been generated using IFFT. Semi active suspension gives better ride comfort with consumption of fraction of power required for active suspension. A mathematical model has been developed and control algorithm has been verified with the purpose/objective of reducing the unwanted sprung mass motions such as heave, pitch and roll. However, the cost and complexity of the system increases with implementation of semi-active control, especially in military domain. In addition to fully passive and fully semi-active a comparison has been made with partial semi-active control for a multi-axle vehicle to obviate the constraints. The time domain response of the suspension system using various control logics are obtained and compared. Simulations for different class of roads as defined in ISO: 8608 have been run and the ride comfort is evaluated and compared in terms of rms acceleration at CG in vertical direction (Z), which is the major contributor for ORV (Overall Ride Value) Measurement.


Author(s):  
W Foag

The message of this simulation and optimization-based design study is threefold: first, short-distance (below 2 m) road profile preview substantially improves all relevant performance criteria of an active suspension; second, controller design for such a preview suspension can be done in a pragmatic, yet systematic way; and third, the preview (feedforward) part of the control law can co-operate harmonically with the controller of an already conceived or existing feedback-only active suspension.


Author(s):  
John Dye ◽  
Nathan BuchMueller ◽  
Hamid Lankarani

Many modern vehicle control systems utilize automatic braking and torque control to enhance driver inputs for improved stability and deceleration performance of passenger cars. A semi-active suspension approach may allow changes to the suspension characteristics under various conditions or driver inputs during vehicle operation. Suspensions are increasingly using semi active components to enhance handling characteristics by electronically adjusting vehicle dynamics. The active style of adjustment includes modifying suspension parameters directly such as electronic damping rates. The type of controller is important to react or adjust dynamically to the nonlinear nature of suspension systems. An optimal controller is introduced in attempt to improve ride comfort or road handling capability by manipulating the damping coefficient for a given trajectory. A suboptimal approach is given by utilizing a type of receding horizon control. The cost function, as used by Savaresi, contains a bias parameter to shift focus between road holding and passenger comfort. A dynamic quarter car suspension model is presented for simulation of nonlinear vehicle dynamics. During simulation at a given time step, various control inputs are simulated for finite steps into the future. The control input that minimizes the cost function is selected and the simulation time is allowed to advance with that input. The model is simulated using parameters for a typical passenger car and a 100 millisecond update rate from the suboptimal controller. A road profile with a bump is simulated and its transients are analyzed. The suboptimal controller is compared to its purely mechanical realization with a fixed damping coefficient. It is shown when manipulating the cost function ride comfort is desired chassis accelerations are minimized and when maximum road holding is desired tire deflection is minimized.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 171
Author(s):  
Jiguang Hou ◽  
Xianteng Cao ◽  
Changshu Zhan

Suspension is an important part of intelligent and safe transportation; it is the balance point between the comfort and handling stability of a vehicle under intelligent traffic conditions. In this study, a control method of left-right symmetry of air suspension based on H∞ theory was proposed, which was verified under intelligent traffic conditions. First, the control stability caused by the active suspension control system running on uneven roads needs to be ensured. To address this issue, a 1/4 vehicle active suspension model was established, and the vertical acceleration of the vehicle body was applied as the main index of ride comfort. H∞ performance constraint output indicators of the controller contained the tire dynamic load, suspension dynamic stroke, and actuator control force limit. Based on the Lyapunov stability theory, an output feedback control law with H∞-guaranteed performance was proposed to constrain multiple targets. This way, the control problem was transformed into a solution to the Riccati equation. The simulation results showed that when dealing with general road disturbances, the proposed control strategy can reduce the vehicle body acceleration by about 20% and meet the requirements of an ultimate suspension dynamic deflection of 0.08 m and a dynamic tire load of 1500 N. Using this symmetrical control method can significantly improve the ride comfort and driving stability of a vehicle under intelligent traffic conditions.


2020 ◽  
Vol 225 (02) ◽  
pp. 31-38
Author(s):  
Vũ Văn Tấn

Độ êm dịu chuyển động là một yếu tố quan trọng trong việc thiết kế ô tô. Có nhiều cách tiếp cận có thể được sử dụng để nâng cao đặc tính này, trong đó các nhà nghiên cứu Việt Nam và thế giới quan tâm đến hệ thống treo bán tích cực. Bài báo này giới thiệu phương pháp điều khiển cân bằng được sử dụng cho hệ thống treo bán tích cực với hai chiến lược điều khiển bao gồm bộ điều khiển cân bằng on-off và liên tục. Ý tưởng chính của chiến lược này là lực giảm chấn được điều khiển thay đổi sao cho có biên độ bằng với lực của lò xo nhưng ngược dấu. Điều này sẽ giảm gia tốc thẳng đứng của thân xe. Kết quả mô phỏng trên miền thời gian chỉ rõ rằng bằng cách sử dụng phương pháp điều khiển cân bằng, giá trị sai lệch bình phương trung bình của dịch chuyển thân xe, góc lắc dọc thân xe và gia tốc của chúng giảm từ 25% đến 50% so với hệ thống treo bị động.


Sign in / Sign up

Export Citation Format

Share Document