The Origin of Flank Wear in Turning Ti-6Al-4V

Author(s):  
Trung Nguyen ◽  
Patrick Kwon ◽  
Di Kang ◽  
Thomas R. Bieler

Unlike ferrous materials, where the cementite (Fe3C) phase acts as an abrasive that contributes to flank wear on the cutting tool, most titanium (Ti) alloys possesses no significant hard phase. Thus, the origin of flank wear is unclear in machining Ti alloys. To address this question, a Ti-6Al-4V bar was turned under various conditions with uncoated carbide and polycrystalline diamond (PCD) inserts, most commonly used tool materials for machining Ti alloys. These inserts were retrieved sporadically while tuning to examine the wear patterns using a confocal microscope. To correlate the patterns with the microstructure of the original bar, the microstructure was carefully characterized using Orientation Image Microscopy™ (OIM) with electron-backscattered diffraction (EBSD). From the wear patterns, two distinct types of damage were identified: (a) microscopic and macroscopic fractures on the cutting edges and (b) scoring marks on flank faces. This paper demonstrates that both types of damage were caused primarily by the heterogeneity in hardness in the α-crystals, where the plane perpendicular to the c-axis in an α-crystal is substantially harder than any other direction in the α-crystal as well as the isotropic β-crystal. In addition to such heterogeneities, adhesion layer, ubiquitous to machining Ti alloys, detaches small fragments of the tool, which resulted in microscopic and macroscopic fractures observed on flank wear.

2014 ◽  
Author(s):  
Trung Nguyen ◽  
Patrick Kwon ◽  
D. Kang ◽  
Tom Bieler

This paper addresses the root cause for flank and nose wear when machining Ti alloys. In machining ferrous metals, at least the cementite (Fe3C) phase is present as the abrasive contributing to the flank wear. However, most titanium alloys possesses no significant hard phase, which questions the root cause for those wear. In this study, a Ti-6Al-4V bar was turned under various conditions with few grades of uncoated carbide and PCD-insert type tools. The cutting tools were retrieved sporadically after stopping the tuning process in order to examine the wear patterns and their evolution on the tools. The nose and flank wear patterns on the tool inserts were investigated with a confocal microscope. The microstructure of the bar was characterized using Orientation Image Microscope with Electron-Backscattered Diffraction Scan (EBDS). Two distinct types of damages were identified, (a) Micro-fracture at the cutting edge and (b) Scoring markings. Based on the microstructure and the tool wear patterns, this paper claims that both types of damages were caused primarily by the hard orientation of the alpha (α or Hexagonal Closed Packed) crystalline phases and secondarily by the adhesion layer detaching parts of the tool material from the nose and flank surfaces.


2013 ◽  
Vol 579-580 ◽  
pp. 61-64
Author(s):  
Guo Jun Dong ◽  
Yu Liang Zhang ◽  
Ming Zhou ◽  
Mao Wei Li

Titanium alloy is a kind of materials difficult to be machined. In this paper, the author performed the wear experiment of polycrystalline diamond (PCD) tool in precision cutting of titanium alloy material Ti-6A1-4V, and carried out test for morphology and composition of the wear area of tool using scanning electron microscopy and energy dispersive analyzer. The results showed that the hard particles wear and adhesive wear were main reason for cutting tool wear, and main wear form is flank wear.


Author(s):  
Dinh Nguyen ◽  
Patrick Kwon ◽  
Vadim Voznyuk ◽  
Dave Kim

In the aerospace industry, titanium (Ti) alloys, especially Ti6Al4V, has been extensively used over other light weight alloys due to their high strength-to-weight ratio. However, the material and production costs have been major obstacles in the adoption of Ti alloys for a wide variety of applications. The machining of Ti alloys is one of the most time consuming and expensive mechanical processes in aerospace manufacturing. Based on previous literature on the topic, coated drills have had some degree of success in the drilling of Ti. To further the work, this paper conducts a comparative study in which Ti6Al4V plates are drilled with super hard coated drills such as Diamond-like-Carbon (DLC), AlMgB14 (BAM) and nanocomposite AlCrSiN. The results are compared with those of an uncoated drill bit. Working with a coating supplier, several variations of BAM coating have been applied and used in our drilling experiments. To evaluate the performance of these drills, scanning electron microscopy and confocal laser microscopy were used to assess the wear progress of each drill qualitatively and quantitatively. In drilling Ti alloys, the primary mechanisms of flank wear are abrasion, microscopic fracture (chipping) and attrition, which result in the detachment of the adhesion layer located at the cutting edge. For all the drills, the predominant wear occurs near the margin. From our drilling experiments, it has been observed that AlCrSiN and BAM drills have survived up to 58 holes and over 80 holes, respectively, while both uncoated and DLC drills have experienced catastrophic fracture at less than 40 holes.


Author(s):  
Alper Uysal ◽  
Erhan Altan

In this study, the slip-line field model developed for orthogonal machining with a worn cutting tool was experimentally investigated. Minimum and maximum values of five slip-line angles ( θ1, θ2, δ2, η and ψ) were calculated. The friction forces that were caused by flank wear land, chip up-curl radii and chip thicknesses were calculated by solving the model. It was specified that the friction force increased with increase in flank wear rate and uncut chip thickness and it decreased a little with increase in cutting speed and rake angle. The chip up-curl radius increased with increase in flank wear rate and it decreased with increase in uncut chip thickness. The chip thickness increased with increase in flank wear rate and uncut chip thickness. Besides, the chip thickness increased with increase in rake angle and it decreased with increase in cutting speed.


2021 ◽  
Vol 5 (2) ◽  
pp. 34
Author(s):  
Guangxian Li ◽  
Ge Wu ◽  
Wencheng Pan ◽  
Rizwan Abdul Rahman Rashid ◽  
Suresh Palanisamy ◽  
...  

Polycrystalline diamond (PCD) tools are widely used in industry due to their outstanding physical properties. However, the ultra-high hardness of PCD significantly limits the machining efficiency of conventional abrasive grinding processes, which are utilized to manufacture PCD tools. In contrast, electrical discharge grinding (EDG) has significantly higher machining efficiency because of its unique material removal mechanism. In this study, the quality and performance of PCD tools machined by abrasive grinding and EDG were investigated. The performance of cutting tools consisted of different PCD materials was tested by high-speed turning of titanium alloy Ti6Al4V. Flank wear and crater wear were investigated by analyzing the worn profile, micro morphology, chemical decomposition, and cutting forces. The results showed that an adhesive-abrasive process dominated the processes of flank wear and crater wear. Tool material loss in the wear process was caused by the development of thermal cracks. The development of PCD tools’ wear made of small-sized diamond grains was a steady adhesion-abrasion process without any catastrophic damage. In contrast, a large-scale fracture happened in the wear process of PCD tools made of large-sized diamond grains. Adhesive wear was more severe on the PCD tools machined by EDG.


Author(s):  
Niniza S. P. Dlamini ◽  
Iakovos Sigalas ◽  
Andreas Koursaris

Cutting tool wear of polycrystalline cubic boron nitride (PcBN) tools was investigated in oblique turning experiments when machining compacted graphite iron at high cutting speeds, with the intention of elucidating the failure mechanisms of the cutting tools and presenting an analysis of the chip formation process. Dry finish turning experiments were conducted in a CNC lathe at cutting speeds in the range of 500–800m/min, at a feed rate of 0.05mm/rev and depth of cut of 0.2mm. Two different tool end-of-life criteria were used: a maximum flank wear scar size of 0.3mm (flank wear failure criterion) or loss of cutting edge due to rapid crater wear to a point where the cutting tool cannot machine with an acceptable surface finish (surface finish criterion). At high cutting speeds, the cutting tools failed prior to reaching the flank wear failure criterion due to rapid crater wear on the rake face of the cutting tools. Chip analysis, using SEM, revealed shear localized chips, with adiabatic shear bands produced in the primary and secondary shear zones.


1996 ◽  
Vol 11 (7) ◽  
pp. 1765-1775 ◽  
Author(s):  
James M. Olson ◽  
Michael J. Dawes

Thin diamond film coated WC-Co cutting tool inserts were produced using arc-jet and hot-filament chemical vapor deposition. The diamond films were characterized using SEM, XRD, and Raman spectroscopy to examine crystal structure, fracture mode, thickness, crystalline orientation, diamond quality, and residual stress. The performance of the tools was evaluated by comparing the wear resistance of the materials to brazed polycrystalline diamond-tipped cutting tool inserts (PCD) while machining A390 aluminum (18% silicon). Results from the experiments carried out in this study suggest that the wear resistance of the thin diamond films is primarily related to the grain boundary strength, crystal orientation, and the density of microdefects in the diamond film.


Metal Cutting ◽  
2000 ◽  
pp. 227-249 ◽  
Author(s):  
Edward M. Trent ◽  
Paul K. Wright

Sign in / Sign up

Export Citation Format

Share Document