Atomically Informed Continuum Models for the Elastic Contact Properties of Hollow and Coated Rigid Cylinders at the Nanoscale

2017 ◽  
Vol 84 (3) ◽  
Author(s):  
Leon Gorelik ◽  
Dan Mordehai

Understanding the mechanical properties of contacts at the nanoscale is key to controlling the strength of coated surfaces. In this work, we explore to which extent existing continuum models describing elastic contacts with coated surfaces can be extended to the nanoscale. Molecular dynamics (MD) simulations of hollow cylinders or coated rigid cylinders under compression are performed and compared with models at the continuum level, as two representative extreme cases of coating which is substantially harder or softer than the substrate, respectively. We show here that the geometry of the atomic-scale contact is essential to capture the contact stiffness, especially for hollow cylinders with high relative thicknesses and for coated rigid cylinders. The contact pressure profiles in atomic-scale contacts are substantially different than the one proposed in the continuum models for rounded contacts. On the basis of these results, we formulate models whose solution can be computed analytically for the contact stiffness in the two extreme cases, and show how to bridge between the atomic and continuum scales with atomically informed geometry of the contact.

Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1484
Author(s):  
Christopher Reinknecht ◽  
Anthony Riga ◽  
Jasmin Rivera ◽  
David A. Snyder

Proteins are molecular machines requiring flexibility to function. Crystallographic B-factors and Molecular Dynamics (MD) simulations both provide insights into protein flexibility on an atomic scale. Nuclear Magnetic Resonance (NMR) lacks a universally accepted analog of the B-factor. However, a lack of convergence in atomic coordinates in an NMR-based structure calculation also suggests atomic mobility. This paper describes a pattern in the coordinate uncertainties of backbone heavy atoms in NMR-derived structural “ensembles” first noted in the development of FindCore2 (previously called Expanded FindCore: DA Snyder, J Grullon, YJ Huang, R Tejero, GT Montelione, Proteins: Structure, Function, and Bioinformatics 82 (S2), 219–230) and demonstrates that this pattern exists in coordinate variances across MD trajectories but not in crystallographic B-factors. This either suggests that MD trajectories and NMR “ensembles” capture motional behavior of peptide bond units not captured by B-factors or indicates a deficiency common to force fields used in both NMR and MD calculations.


Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 127
Author(s):  
YongChao Wang ◽  
YinBo Zhu ◽  
HengAn Wu

The porous characteristics of disordered carbons are critical factors to their performance on hydrogen storage and electrochemical capacitors. Even though the porous information can be estimated indirectly by gas adsorption experiments, it is still hard to directly characterize the porous morphology considering the complex 3D connectivity. To this end, we construct full-atom disordered graphene networks (DGNs) by mimicking the chlorination process of carbide-derived carbons using annealing-MD simulations, which could model the structure of disordered carbons at the atomic scale. The porous characteristics, including pore volume, pore size distribution (PSD), and specific surface area (SSA), were then computed from the coordinates of carbon atoms. From the evolution of structural features, pores grow dramatically during the formation of polyaromatic fragments and sequent disordered framework. Then structure is further graphitized while the PSD shows little change. For the obtained DGNs, the porosity, pore size, and SSA increase with decreasing density. Furthermore, SSA tends to saturate in the low-density range. The DGNs annealed at low temperatures exhibit larger SSA than high-temperature DGNs because of the abundant free edges.


1998 ◽  
Vol 538 ◽  
Author(s):  
F. Cleri

AbstractThe validity and predictive capability of continuum models of fracture rests on basic informations whose origin lies at the atomic scale. Examples of such crucial informations are, e.g., the explicit form of the cohesive law in the Barenblatt model and the shear-displacement relation in the Rice-Peierls-Nabarro model. Modem approaches to incorporate atomic-level information into fracture modelling require to increase the size of atomic-scale models up to millions of atoms and more; or to connect directly atomistic and macroscopic, e.g. finite-elements, models; or to pass information from atomistic to continuum models in the form of constitutive relations. A main drawback of the atomistic methods is the complexity of the simulation results, which can be rather difficult to rationalize in the framework of classical, continuum fracture mechanics. We critically discuss the main issues in the atomistic simulation of fracture problems (and dislocations, to some extent); our objective is to indicate how to set up atomistic simulations which represent well-posed problems also from the point of view of continuum mechanics, so as to ease the connection between atomistic information and macroscopic models of fracture.


2020 ◽  
Vol 239 ◽  
pp. 03010
Author(s):  
Liyuan Hu ◽  
Yushou Song ◽  
Yingwei Hou ◽  
Huilan Liu

The experimental data of the elastic scattering angular distribution of 17F+12C at 170 MeV is analyzed by the continuum-discretized coupled channels (CDCC) method and the optical model (OM). In the CDCC calculation, the unambiguous optical potential of 16O+12C is used as the input to give the coupling potentials. A very refractive feature is found and two evident Airy minima are predicted at large angles. The one-channel calculation is also performed and gives nearly the same result. In the OM calculations, this optical potential of 16O+12C is used again and adjusted to reproduce the angular distribution of 17F+12C. The Airy oscillation appears again in the calculated angular distribution. These results indicate that the elastic scattering of 17F+12C at 170 MeV has the possibility of the nuclear rainbow phenomenon, which is probably due to the contribution from the 16O core.


1988 ◽  
Vol 108 ◽  
pp. 133-140
Author(s):  
W. Schmutz

Advances in theoretical modeling of rapidly expanding atmospheres in the past few years made it possible to determine the stellar parameters of the Wolf-Rayet stars. This progress is mainly due to the improvement of the models with respect to their spatial extension: The new generation of models treat spherically-symmetric expanding atmospheres, i.e. the models are one-dimensional. Older models describe the wind by only one representative point. The older models are in fact ‘core-halo’ approximations. They have been introduced by Castor and van Blerkom (1970), and were extensively employed in the past (cf. e.g. Willis and Wilson, 1978; Smith and Willis, 1982). First results from new one-dimensional model calculations are published by Hillier (1984), Schmutz (1984), Hamann (1985), Hillier (1986), and Schmutz et al. (1987a); more detailed results are presented by Schmutz and Hamann (1986), Hamann and Schmutz (1987), Hillier (1987a,b), Wessolowski et al. (1987), Hillier (1987c) and Hamann et al. (1987). These results demonstrate that the step from zero- to one-dimensional calculations is essential. The important point is that the complicated interrelation between NLTE-level populations and radiation field is treated adequately (Schmutz and Hamann, 1986; Hillier, 1987). For this interrelation it is crucial to model consistently not only the line-formation region, but also the layers where the continuum is emitted. In fact, it is the core-halo approximation that causes the one-point models to fail in certain aspects.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2199
Author(s):  
Markus Scholle

Fluid mechanics has emerged as a basic concept for nearly every field of technology. Despite there being a well-developed mathematical theory and available commercial software codes, the computation of solutions of the governing equations of motion is still challenging, especially due to the nonlinearity involved, and there are still open questions regarding the underlying physics of fluid flow, especially with respect to the continuum hypothesis and thermodynamic local equilibrium. The aim of this Special Issue is to reference recent advances in the field of fluid mechanics both in terms of developing sophisticated mathematical methods for finding solutions of the equations of motion, on the one hand, and on novel approaches to the physical modelling beyond the continuum hypothesis and thermodynamic local equilibrium, on the other.


2011 ◽  
pp. 153-179
Author(s):  
B. L. N. Kennett ◽  
H.-P. Bunge
Keyword(s):  

Author(s):  
M. Lavella ◽  
D. Botto ◽  
M. M. Gola

Fretting wear is a complex phenomenon that occurs at component interfaces that are subjected to low amplitude oscillation under high contact pressure. In turbomachinery fretting occurs also at the blade tip interfaces where shrouds, that have the aim to reduce the blade resonant vibration amplitude, are machined. To diminish the fretting damage coatings are applied to the blade tips. The aim of this study is to compare the fretting wear behaviour of single crystal CMSX-4 superalloy interfaces with and without plasma sprayed T-800 coating. Experiments have been conducted with hemispherical surface in contact with a flat surface of the same materials at temperature of 800 °C. The hysteresis cycles have been measured through the experiment. The comparison of the hysteresis cycles shown that the tangential contact stiffness of the coated surfaces is greater then that of the surfaces without coating. At the end of wear process, the mating surfaces have been characterized by three-dimensional optical interferometry and SEM analysis. After 10×106 wear cycles, the uncoated surfaces show a large change in the contact parameters and fretting cracks on the flat surface. On the other hand, the coated surfaces do not shows a measurable change in the contact parameters while the coating damage on the flat surface leads to predict an incipient catastrophic wear.


Sign in / Sign up

Export Citation Format

Share Document