Numerical Studies of Glow Plug Shield on Natural Gas Ignition Characteristics in a Compression-Ignition Engine

Author(s):  
Kang Pan ◽  
James S. Wallace

This paper presents a numerical study on fuel injection, ignition, and combustion in a direct-injection natural gas (DING) engine with ignition assisted by a shielded glow plug (GP). The shield geometry is investigated by employing different sizes of elliptical shield opening and changing the position of the shield opening. The results simulated by KIVA-3V indicated that fuel ignition and combustion is very sensitive to the relative angle between the fuel injection and the shield opening, and the use of an elliptical opening for the glow plug shield can reduce ignition delay by 0.1–0.2 ms for several specific combinations of the injection angle and shield opening size, compared to a circular shield opening. In addition, the numerical results also revealed that the natural gas ignition and flame propagation will be delayed by lowering a circular shield opening from the fuel jet center plane, due to the blocking effect of the shield to the fuel mixture, and hence, it will reduce the DING engine performance by causing a longer ignition delay.

Author(s):  
Kang Pan ◽  
James S. Wallace

This paper presents a numerical study on fuel injection, ignition and combustion in a direct-injection natural gas (DING) engine with ignition assisted by a shielded glow plug (GP). The shield geometry is investigated by employing different sizes of elliptical shield opening and changing the position of the shield opening. The results simulated by KIVA-3V indicated that fuel ignition and combustion is very sensitive to the relative angle between the fuel injection and the shield opening, and the use of an elliptical opening for the glow plug shield can reduce ignition delay by 0.1∼0.2ms for several specific combinations of the injection angle and shield opening size, compared to a circular shield opening. In addition, the numerical results also revealed that the natural gas ignition and flame propagation will be delayed by lowering a circular shield opening from the fuel jet center plane, due to the blocking effect of the shield to the fuel mixture, and hence it will reduce the DING performance by causing a longer ignition delay.


Author(s):  
Kang Pan ◽  
James S. Wallace

A numerical study of ignition and combustion in a glow plug (GP) assisted direct-injection natural gas (DING) engine is presented in this paper. The glow plug is shielded and the shield design is an important part of the combustion system development. The results simulated by KIVA-3V indicated that the ignition delay (ID) predicted by an in-cylinder pressure rise was different from that based on a temperature rise, attributed to the additional time required to burn more fuel to obtain a detectable pressure rise in the combustion chamber. This time difference for the ignition delay estimation can be 0.5 ms, which is significant relative to an ignition delay value of less than 2 ms. To further evaluate the time difference between the two different methods of ignition delay determination, sensitivity studies were conducted by changing the glow plug temperature, and rotating the glow plug shield opening angle towards the fuel jets. The results indicated that the ID method time difference varied from 0.3 to 0.8 ms for different combustion chamber configurations. In addition, this study also investigated the influences of different glow plug shield parameters on the natural gas ignition and combustion characteristics, by modifying the air gap between the glow plug and its shield, and by changing the shield opening size. The computational results indicated that a bigger air gap inside the shield can delay gas ignition, and a smaller shield opening can block the flame propagation for some specific fuel injection angles.


Author(s):  
Stewart Xu Cheng ◽  
James S. Wallace

Direct injection natural gas (DING) engines offer the advantages of high thermal efficiency and high power output compared to spark ignition natural gas engines. Injected natural gas requires some form of ignition assist in order to ignite in the time available in a diesel engine combustion chamber. A glow plug — a heated surface — is one form of ignition assist. Simple experiments show that the thickness of the heat penetration layer of a glow plug is very small (≈10−5 m) within the time scale of the ignition preparation period (1–2 ms). Meanwhile, the theoretical analyses reveal that only a very thin layer of the surrounding gases (in micrometer scale) can be heated to high temperature to achieve spontaneous ignition. A discretized glow plug model and virtual gas sub-layer model have been developed for CFD modeling of glow plug ignition and combustion for DING diesel engines. In this paper, CFD modeling results are presented. The results were obtained using a KIVA3 code modified to include the above mentioned new developed models. Natural gas ignition over a bare glow plug was simulated. The results were validated against experiments. Simulation of natural gas ignition over a shielded glow plug was also carried out and the results illustrate the necessity of using a shield. This paper shows the success of the discretized glow plug model working together with the virtual gas sub-layer model for modeling glow plug assisted natural gas direct injection engines. The modeling can aid in the design of injection and ignition systems for glow plug assisted DING engines.


2019 ◽  
Vol 16 (1) ◽  
pp. 36-42
Author(s):  
Hernando Alexander Yepes-Tumay ◽  
Arley Cardona-Vargas

The effect of ethane on combustion and natural gas autoignition was studied in the present paper. Two fuel mixture of natural gas with high ethane content were considered, 75% CH4 – 25% C2H6 (mixture 1), and 50% CH4 – 50% C2H6 (mixture 2). Natural gas combustion incidence was analyzed through the calculation of energy properties and the ignition delay time numerical calculations along with an ignition mode analysis. Specifically, the strong ignition limit was calculated to determine the effect of ethane on natural gas autoignition. According to the results, ignition delay time decreases for both mixtures in comparison with pure methane. The strong ignition limit shifts to lower temperatures when ethane is present in natural gas chemical composition.  


2017 ◽  
Vol 18 (10) ◽  
pp. 1035-1054 ◽  
Author(s):  
Kang Pan ◽  
James S Wallace

This article presents the results of computational studies investigating the ignition of high-pressure natural gas jets in a compression-ignition engine with glow plug ignition assist. The simulation was conducted using a KIVA-3V-based three-dimensional engine model, along with an improved fuel injector model, a detailed cut-off glow plug shield model and a modified two-step methane reaction mechanism, to simulate the natural gas injection and ignition. The simulated results demonstrate the significance of using a shield for the glow plug. Compared to an unshielded (bare) glow plug, the shield not only reduces the heat loss from the hot glow plug surface to the cold intake air charge and the cold injected gas jet but also traps the fuel mixture to increase its residence time adjacent to the hot surface. Over a representative range of heavy-duty diesel engine operating conditions, a shielded glow plug greatly improves the natural gas engine performance and provides reliable ignition, while an unshielded glow plug can only be optimized for specific conditions. The understanding of glow plug shield behavior gained from the simulations suggests avenues for improved shield designs that would yield further reduced ignition delays.


Energies ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 3265
Author(s):  
Ardhika Setiawan ◽  
Bambang Wahono ◽  
Ocktaeck Lim

Experimental research was conducted on a rapid compression and expansion machine (RCEM) that has characteristics similar to a gasoline compression ignition (GCI) engine, using two gasoline–biodiesel (GB) blends—10% and 20% volume—with fuel injection pressures varying from 800 to 1400 bar. Biodiesel content lower than GB10 will result in misfires at fuel injection pressures of 800 bar and 1000 bar due to long ignition delays; this is why GB10 was the lowest biodiesel blend used in this experiment. The engine compression ratio was set at 16, with 1000 µs of injection duration and 12.5 degree before top dead center (BTDC). The results show that the GB20 had a shorter ignition delay than the GB10, and that increasing the injection pressure expedited the autoignition. The rate of heat release for both fuel mixes increased with increasing fuel injection pressure, although there was a degradation of heat release rate for the GB20 at the 1400-bar fuel injection rate due to retarded in-cylinder peak pressure at 0.24 degree BTDC. As the ignition delay decreased, the brake thermal efficiency (BTE) decreased and the fuel consumption increased due to the lack of air–fuel mixture homogeneity caused by the short ignition delay. At the fuel injection rate of 800 bar, the GB10 showed the worst efficiency due to the late start of combustion at 3.5 degree after top dead center (ATDC).


Author(s):  
Olivier Mathieu ◽  
Eric L. Petersen ◽  
Alexander Heufer ◽  
Nicola Donohoe ◽  
Wayne Metcalfe ◽  
...  

Depending on the feedstock and the production method, the composition of syngas can include (in addition to H2 and CO) small hydrocarbons, diluents (CO2, water, and N2), and impurities (H2S, NH3, NOx, etc.). Despite this fact, most of the studies on syngas combustion do not include hydrocarbons or impurities and in some cases not even diluents in the fuel mixture composition. Hence, studies with realistic syngas composition are necessary to help designing gas turbines. The aim of this work was to investigate numerically the effect of the variation in the syngas composition on some fundamental combustion properties of premixed systems such as laminar flame speed and ignition delay time at realistic engine operating conditions. Several pressures, temperatures, and equivalence ratios were investigated. To perform this parametric study, a state-of-the-art C0-C5 detailed kinetics mechanism was used. Results of this study showed that the addition of hydrocarbons generally reduces the reactivity of the mixture (longer ignition delay time, slower flame speed) due to chemical kinetic effects. The amplitude of this effect is however dependent on the nature and concentration of the hydrocarbon as well as the initial condition (pressure, temperature, and equivalence ratio).


2018 ◽  
Vol 184 ◽  
pp. 01013
Author(s):  
Corneliu Cofaru ◽  
Mihaela Virginia Popescu

The paper presents the research designed to develop a HCCI (Homogenous Charge Compression Ignition) engine starting from a spark ignition engine platform. The chosen test engine was a single cylinder, four strokes provided with a carburettor. The results of experimental research data obtained on this version were used as a baseline for the next phase of the research. In order to obtain the HCCI configuration, the engine was modified, as follows: the compression ratio was increased from 9.7 to 11.5 to ensure that the air – fuel mixture auto-ignite and to improve the engine efficiency; the carburettor was replaced by a direct fuel injection system in order to control precisely the fuel mass per cycle taking into account the measured intake air-mass; the valves shape were modified to provide a safety engine operation by ensuring the provision of sufficient clearance beetween the valve and the piston; the exchange gas system was changed from fixed timing to variable valve timing to have the possibilities of modification of quantities of trapped burnt gases. The cylinder processes were simulated on virtual model. The experimental research works were focused on determining the parameters which control the combustion timing of HCCI engine to obtain the best energetic and ecologic parameters.


Sign in / Sign up

Export Citation Format

Share Document