Simultaneous Analysis of Elastic and Nonspecific Adhesive Properties of Thin Sample and Biological Cell Considering Bottom Substrate Effect

2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Vishwanath Managuli ◽  
Sitikantha Roy

A new asymptotically correct contact model has been developed for conical tip based atomic force microscopy (AFM) nanoindentation. This new model provides both elastic and nonspecific adhesion properties of cells and soft gels by taking sample thickness at the point of indentation and its depth of indentation into consideration. The bottom substrate effect (BSE) is the most common source of error in the study of “AFM force maps” of the cellular sample. The present model incorporates an asymptotically correct correction term as a function of depth of indentation to eliminate the substrate effect in the analysis. Later, the model is extended to analyze the unloading portion of the indentation curve to extract the stiffness and adhesive properties simultaneously. A comparative study of the estimated material properties using other established contact models shows that the provided corrections effectively curb the errors coming from infinite thickness assumption. Nonspecific adhesive nature of a cell is represented in terms of adhesion parameter (γa) based on the “work of adhesion,” this is an alternative to the peak value of tip–sample attractive (negative) force commonly used as representative adhesion measurement. The simple analytical expression of the model can help in estimating more realistic and accurate biomechanical properties of cells from atomic force microscopy based indentation technique.

Microbiology ◽  
2011 ◽  
Vol 157 (11) ◽  
pp. 3049-3058 ◽  
Author(s):  
Jun Dong ◽  
Karla S. L. Signo ◽  
Elizabeth M. Vanderlinde ◽  
Christopher K. Yost ◽  
Tanya E. S. Dahms

Atomic force microscopy was used to investigate the surface ultrastructure, adhesive properties and biofilm formation of Rhizobium leguminosarum and a ctpA mutant strain. The surface ultrastructure of wild-type R. leguminosarum consists of tightly packed surface subunits, whereas the ctpA mutant has much larger subunits with loose lateral packing. The ctpA mutant strain is not capable of developing fully mature biofilms, consistent with its altered surface ultrastructure, greater roughness and stronger adhesion to hydrophilic surfaces. For both strains, surface roughness and adhesive forces increased as a function of calcium ion concentration, and for each, biofilms were thicker at higher calcium concentrations.


Micron ◽  
2018 ◽  
Vol 112 ◽  
pp. 84-90 ◽  
Author(s):  
Dariusz Laskowski ◽  
Janusz Strzelecki ◽  
Konrad Pawlak ◽  
Hanna Dahm ◽  
Aleksander Balter

2004 ◽  
Vol 186 (11) ◽  
pp. 3286-3295 ◽  
Author(s):  
Ahmed Touhami ◽  
Manfred H. Jericho ◽  
Terry J. Beveridge

ABSTRACT The growth and division of Staphylococcus aureus was monitored by atomic force microscopy (AFM) and thin-section transmission electron microscopy (TEM). A good correlation of the structural events of division was found using the two microscopies, and AFM was able to provide new additional information. AFM was performed under water, ensuring that all structures were in the hydrated condition. Sequential images on the same structure revealed progressive changes to surfaces, suggesting the cells were growing while images were being taken. Using AFM small depressions were seen around the septal annulus at the onset of division that could be attributed to so-called murosomes (Giesbrecht et al., Arch. Microbiol. 141:315-324, 1985). The new cell wall formed from the cross wall (i.e., completed septum) after cell separation and possessed concentric surface rings and a central depression; these structures could be correlated to a midline of reactive material in the developing septum that was seen by TEM. The older wall, that which was not derived from a newly formed cross wall, was partitioned into two different surface zones, smooth and gel-like zones, with different adhesive properties that could be attributed to cell wall turnover. The new and old wall topographies are equated to possible peptidoglycan arrangements, but no conclusion can be made regarding the planar or scaffolding models.


2011 ◽  
Vol 13 (21) ◽  
pp. 9995 ◽  
Author(s):  
Yifan Hu ◽  
Jens Ulstrup ◽  
Jingdong Zhang ◽  
Søren Molin ◽  
Vincent Dupres

Microbiology ◽  
2014 ◽  
Vol 160 (7) ◽  
pp. 1466-1473 ◽  
Author(s):  
Shivani Sharma ◽  
Stacey Lavender ◽  
JungReem Woo ◽  
Lihong Guo ◽  
Wenyuan Shi ◽  
...  

A major aetiological factor of dental caries is the pathology of the dental plaque biofilms. The amino acid l-arginine (Arg) is found naturally in saliva as a free molecule or as a part of salivary peptides and proteins. Plaque bacteria metabolize Arg to produce alkali and neutralize glycolytic acids, promoting a less cariogenous oral microbiome. Here, we explored an alternative and complementary mechanism of action of Arg using atomic force microscopy. The nanomechanical properties of Streptococcus mutans biofilm extracellular matrix were characterized under physiological buffer conditions. We report the effect of Arg on the adhesive behaviour and structural properties of extracellular polysaccharides in S. mutans biofilms. High-resolution imaging of biofilm surfaces can reveal additional structural information on bacterial cells embedded within the surrounding extracellular matrix. A dense extracellular matrix was observed in biofilms without Arg compared to those grown in the presence of Arg. S. mutans biofilms grown in the presence of Arg could influence the production and/or composition of extracellular membrane glucans and thereby affect their adhesion properties. Our results suggest that the presence of Arg in the oral cavity could influence the adhesion properties of S. mutans to the tooth surface.


2005 ◽  
Vol 71 (2) ◽  
pp. 955-960 ◽  
Author(s):  
Liming Zhao ◽  
David Schaefer ◽  
Mark R. Marten

ABSTRACT Previous studies have described both surface morphology and adhesive properties of fungal spores, but little information is currently available on their mechanical properties. In this study, atomic force microscopy (AFM) was used to investigate both surface topography and micromechanical properties of Aspergillus nidulans spores. To assess the influence of proteins covering the spore surface, wild-type spores were compared with spores from isogenic rodA + and rodA − strains. Tapping-mode AFM images of wild-type and rodA + spores in air showed characteristic “rodlet” protein structures covering a granular spore surface. In comparison, rodA − spores were rodlet free but showed a granular surface structure similar to that of the wild-type and rodA + spores. Rodlets were removed from rodA + spores by sonication, uncovering the underlying granular layer. Both rodlet-covered and rodlet-free spores were subjected to nanoindentation measurements, conducted in air, which showed the stiffnesses to be 110 ± 10, 120 ± 10, and 300 ± 20 N/m and the elastic moduli to be 6.6 ± 0.4, 7.0 ± 0.7, and 22 ± 2 GPa for wild-type, rodA + and rodA − spores, respectively. These results imply the rodlet layer is significantly softer than the underlying portion of the cell wall.


Sign in / Sign up

Export Citation Format

Share Document