Derivation for Electric Current Regulation Equation of a Gradient Magnetic Field to Control Suspending Magnetic Particles Inside Dialysate Solution

2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Junfeng Lu ◽  
Wen-Qiang Lu

To design a better adsorption performance in a novel magnetic adsorption device used for hemodialysis (HD), the mechanical properties of magnetic absorbents trapped inside a two-phase system are studied in this paper. A gradient magnetic coil field is assumed to produce the magnetic driving force that balances other hydraulic forces for the adsorbents. For this field, a related winding equation for the solenoid coil is obtained in our previous work; and a complement practical form of the winding equation is derived in this paper. Case studies are also described in this paper to explore the design aspects of the field.

Author(s):  
Junfeng Lu ◽  
Wen-qiang Lu

To allow a better adsorption performance inside a novel magnetic adsorption device designed in the process of hemodialysis, the mechanical properties of magnetic absorbents trapped inside a two-phase system are studied in this paper. A gradient magnetic coil field was assumed to produce the magnetic driving force that balances other hydraulic forces for the adsorbents. Applying this field, a complement practical form of winding equation for the solenoid coil is obtained. The case studies are also made in this paper to explore the design of the field.


Geofluids ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Mohamed F. El-Amin ◽  
Ahmed M. Saad ◽  
Amgad Salama ◽  
Shuyu Sun

In this paper, the magnetic nanoparticles are injected into a water-oil, two-phase system under the influence of an external permanent magnetic field. We lay down the mathematical model and provide a set of numerical exercises of hypothetical cases to show how an external magnetic field can influence the transport of nanoparticles in the proposed two-phase system in porous media. We treat the water-nanoparticles suspension as a miscible mixture, whereas it is immiscible with the oil phase. The magnetization properties, the density, and the viscosity of the ferrofluids are obtained based on mixture theory relationships. In the mathematical model, the phase pressure contains additional term to account for the extra pressures due to fluid magnetization effect and the magnetostrictive effect. As a proof of concept, the proposed model is applied on a countercurrent imbibition flow system in which both the displacing and the displaced fluids move in opposite directions. Physical variables, including water-nanoparticles suspension saturation, nanoparticles concentration, and pore wall/throat concentrations of deposited nanoparticles, are investigated under the influence of the magnetic field. Two different locations of the magnet are studied numerically, and variations in permeability and porosity are considered.


2020 ◽  
Vol 10 (11) ◽  
pp. 3976
Author(s):  
Changje Lee ◽  
Yong-Seok Choi

In this study, we experimentally investigated magnetic particle movement in two-phase flow under an external magnetic field. According to Faraday’s law, the alignment of a magnet is important for power generation. For high generation, it is important to understand how magnetic particles move in two-phase flow. The rotationality could be determined by observing a single particle; however, this is impossible due to the flow conditions. In this study, we estimated nonrotationality based on the vorticity. To eliminate scattered light and improve the signal-to-noise ratio, the laser-induced fluorescence particle image velocimetry technique was used. The solenoid nozzle has a hydraulic diameter of 3 mm. Its surface is covered with a coil with a diameter of 0.3 mm. The average diameter of a magnetic particle is 1.2 μm. The excitation and emission wavelengths are 532 and 612 nm, respectively. A thin laser sheet setup was configured. The laser sheet was illuminated on both sides to prevent shadows. The images were captured at 200 μm away from the wall and center of the nozzle. To estimate the decrease in vorticity, the theoretical and single-phase non-magnetic and magnetic particles are compared. The vorticity of magnetic particles is reduced by the external magnetic field.


Author(s):  
Y. I. Shishatskii ◽  
A. A. Derkanosova ◽  
S. A. Tolstov

The thermodynamic equilibrium of a two-phase system is described by the Gibbs equation, which includes state parameters. On the basis of the Gibbs equation and the combined equation of the first and second laws of thermodynamics, thermodynamic potentials are written: internal energy, enthalpy and Gibbs free energy. If the two phases are in equilibrium, then the temperatures, pressures and chemical potentials of these phases are equal to each other. Equalities express the conditions of thermal and mechanical equilibrium, as well as the condition for the absence of a driving force for the transfer of a component across the interface. For a two-phase system, the Gibbs-Duhem equation connects the volume and entropy of 1 mole of the mixture, the content of any component, expressed in mole fractions. Extraction from lupine particles with cheese whey (solid-liquid system) is considered. The driving force of the extraction process in the solid-liquid system is the difference between the concentration of the solvent at the surface of the solid C and its average concentration C0 in the bulk of the solution. The concentration at the interface is usually taken to be equal to the concentration of a saturated solution of Cn, since equilibrium is established rather quickly near the surface of a solid. Then the driving force of the process is expressed as Cn – C0. A curve for the extraction of extractives from lupine with cheese whey was plotted by superimposing low-frequency mechanical vibrations.


2020 ◽  
Vol 20 (2) ◽  
pp. 50-58 ◽  
Author(s):  
Andrej Krafcik ◽  
Peter Babinec ◽  
Melania Babincova ◽  
Ivan Frollo

AbstractLungs are used as an attractive possibility for administration of different therapeutic substances for a long time. An innovative method of such administration widely studied nowadays is the application of aerosolized magnetic particles as the carriers to the lungs in the external non-homogeneous magnetic field. For these reasons we have studied dynamics of such a system on a level of particle trajectory in air in the presence of magnetic force as a driving force exerted on micrometric magnetic particle. On two typical examples of magnetically driven systems—motion of magnetic particle in a gradient magnetic field and cyclotron-like motion of a charged particle in homogeneous magnetic field in microscale, where the external accelerating forces are very large and the relevant time scale is of the order from fraction of milliseconds to seconds, we have examined the importance of these forces. As has been shown, for particles with high initial acceleration, not only the commonly used Stokes force but also the Basset history force should be used for correct description of the motion.


Sign in / Sign up

Export Citation Format

Share Document