The Effect of Area Ratio Change Via Increased Hole Length for Shaped Film Cooling Holes With Constant Expansion Angles

2018 ◽  
Vol 140 (5) ◽  
Author(s):  
Shane Haydt ◽  
Stephen Lynch ◽  
Scott Lewis

Shaped film cooling holes are used as a cooling technology in gas turbines to reduce metal temperatures and improve durability, and they generally consist of a small metering section connected to a diffuser that expands in one or more directions. The area ratio (AR) of these holes is defined as the area at the exit of the diffuser, divided by the area at the metering section. A larger AR increases the diffusion of the coolant momentum, leading to lower average momentum of the coolant jet at the exit of the hole and generally better cooling performance. Cooling holes with larger ARs are also more tolerant of high blowing ratio conditions, and the increased coolant diffusion typically better prevents jet lift-off from occurring. Higher ARs have traditionally been accomplished by increasing the expansion angle of the diffuser while keeping the overall length of the hole constant. The present study maintains the diffuser expansion angles and instead increases the length of the diffuser, which results in longer holes. Various ARs have been examined for two shaped holes: one with forward and lateral expansion angles of 7 deg (7-7-7 hole) and one with forward and lateral expansion angles of 12 deg (12-12-12 hole). Each hole shape was tested at numerous blowing ratios to capture trends across various flow rates. Adiabatic effectiveness measurements indicate that for the baseline 7-7-7 hole, a larger AR provides higher effectiveness, especially at higher blowing ratios. Measurements also indicate that for the 12-12-12 hole, a larger AR performs better at high blowing ratios but the hole experiences ingestion at low blowing ratios. Steady Reynolds-averaged Navier–Stokes simulations did not accurately predict the levels of adiabatic effectiveness, but did predict the trend of improving effectiveness with increasing AR for both hole shapes. Flowfield measurements with particle image velocimetry (PIV) were also performed at one downstream plane for a low and high AR case, and the results indicate an expected decrease in jet velocity due to a larger diffuser.

Author(s):  
Shane Haydt ◽  
Stephen Lynch ◽  
Scott Lewis

Shaped film cooling holes are used as a cooling technology in gas turbines to reduce metal temperatures and improve durability, and they generally consist of a small metering section connected to a diffuser that expands in one or more directions. The area ratio of these holes is defined as the area at the exit of the diffuser, divided by the area at the metering section. A larger area ratio increases the diffusion of the coolant momentum, leading to lower average momentum of the coolant jet at the exit of the hole and generally better cooling performance. Cooling holes with larger area ratios are also more tolerant of high blowing ratio conditions, and the increased coolant diffusion typically better prevents jet liftoff from occurring. Higher area ratios have traditionally been accomplished by increasing the expansion angle of the diffuser while keeping the overall length of the hole constant. The present study maintains the diffuser expansion angles and instead increases the length of the diffuser, which results in longer holes. Various area ratios have been examined for two shaped holes: one with forward and lateral expansion angles of 7° (7-7-7 hole) and one with forward and lateral expansion angles of 12° (12-12-12 hole). Each hole shape was tested at numerous blowing ratios to capture trends across various flow rates. Adiabatic effectiveness measurements indicate that for the baseline 7-7-7 hole, a larger area ratio provides higher effectiveness, especially at higher blowing ratios. Measurements also indicate that for the 12-12-12 hole, a larger area ratio performs better at high blowing ratios but the hole experiences ingestion at low blowing ratios. Steady RANS simulations did not accurately predict the levels of adiabatic effectiveness, but did predict the trend of improving effectiveness with increasing area ratio for both hole shapes. Flowfield measurements with PIV were also performed at one downstream plane for a low and high area ratio case, and the results indicate an expected decrease in jet velocity due to a larger diffuser.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Shane Haydt ◽  
Stephen Lynch ◽  
Scott Lewis

Shaped film cooling holes are used extensively in gas turbines to reduce component temperatures. These holes generally consist of a metering section through the material and a diffuser to spread coolant over the surface. These two hole features are created separately using electrical discharge machining (EDM), and occasionally, an offset can occur between the meter and diffuser due to misalignment. The current study examines the potential impact of this manufacturing defect to the film cooling effectiveness for a well-characterized shaped hole known as the 7-7-7 hole. Five meter-diffuser offset directions and two offset sizes were examined, both computationally and experimentally. Adiabatic effectiveness measurements were obtained at a density ratio of 1.2 and blowing ratios ranging from 0.5 to 3. The detriment in cooling relative to the baseline 7-7-7 hole was worst when the diffuser was shifted upstream (aft meter-diffuser offset), and least when the diffuser was shifted downstream (fore meter-diffuser offset). At some blowing ratios and offset sizes, the fore meter-diffuser offset resulted in slightly higher adiabatic effectiveness than the baseline hole, due to a reduction in the high-momentum region of the coolant jet caused by a separation region created inside the hole by the fore meter-diffuser offset. Steady Reynolds-averaging Navier–Stokes (RANS) predictions did not accurately capture the levels of adiabatic effectiveness or the trend in the offsets, but it did predict the fore offset's improved performance.


Author(s):  
Siavash Khajehhasani ◽  
Bassam Jubran

A numerical investigation of the film cooling performance from novel sister shaped single-holes (SSSH) is presented in this paper and the obtained results are compared with a single cylindrical hole, a forward diffused shaped hole, as well as discrete sister holes. Three types of the novel sister shaped single-hole schemes namely downstream, upstream and up/downstream SSSH, are designed based on merging the discrete sister holes to the primary hole in order to reduce the jet lift-off effect and increase the lateral spreading of the coolant on the blade surface as well as a reduction in the amount of coolant in comparison with discrete sister holes. The simulations are performed using three-dimensional Reynolds-Averaged Navier Stokes analysis with the realizable k–ε model combined with the standard wall function. The upstream SSSH demonstrates similar film cooling performance to that of the forward diffused shaped hole for the low blowing ratio of 0.5. While it performs more efficiently at M = 1, where the centerline and laterally averaged effectiveness results improved by 70% and 17%, respectively. On the other hand, the downstream and up/downstream SSSH schemes show a considerable improvement in film cooling performance in terms of obtaining higher film cooling effectiveness and less jet lift-off effect as compared with the single cylindrical and forward diffused shaped holes for both blowing ratios of M = 0.5 and 1. For example, the laterally averaged effectiveness for the downstream SSSH configuration shows an improvement of approximately 57% and 110% on average as compared to the forward diffused shaped hole for blowing ratios of 0.5 and 1, respectively.


Author(s):  
Phillip M. Ligrani ◽  
Anthony E. Ramsey

Adiabatic effectiveness and iso-energetic heat transfer coefficients are presented from measurements downstream of film-cooling holes inclined at 30 degrees with respect to the test surface in spanwise/normal planes. With this configuration, holes are spaced 3d apart in the spanwise direction and 4d in the streamwise direction in two staggered rows. Results are presented for an injectant to freestream density ratio near 1.0, and injection blowing ratios from 0.5 to 1.5. Spanwise-averaged adiabatic effectiveness values downstream of the spanwise/normal plane holes are significantly higher than values measured downstream of simple angle holes for x/d<25–70 (depending on blowing ratio) when compared for the same normalized streamwise location, blowing ratio, and spanwise and streamwise hole spacings. Differences are principally due to different coalescence of injectant accumulations from the two different rows of holes, as well as significantly different lift-off dependence on momentum flux ratio. Spanwise-averaged iso-energetic Stanton number ratios are somewhat higher than ones measured downstream of other simple and compound angle configurations studied. Values range between 1.0 and 1.41, increase with blowing ratio at each streamwise station, and show little variation with streamwise location for each value of blowing ratio tested.


1999 ◽  
Vol 121 (4) ◽  
pp. 792-803 ◽  
Author(s):  
M. K. Berthe ◽  
S. V. Patankar

Computations have been conducted on curved, three-dimensional discrete-hole film cooling geometries that included the mainflow, injection hole, and supply plenum regions. Both convex and concave film cooling geometries were studied. The effects of several film cooling parameters have been investigated, including the effects of blowing ratio, injection angle, hole length, hole spacing, and hole staggering. The blowing ratio was varied from 0.5 to 1.5, the injection angle from 35 to 65 deg, the hole length from 1.75D to 6.0D, and the hole spacing from 2D to 3D. The staggered-hole arrangement considered included two rows. The computations were performed by solving the fully elliptic, three-dimensional Navier–Stokes equations over a body-fitted grid. Turbulence closure was achieved using a modified k–ε model in which algebraic relations were used for the turbulent viscosity and the turbulent Prandtl number. The results presented and discussed include plots of adiabatic effectiveness as well as plots of velocity contours and velocity vectors in cross-stream planes. The present study reveals that the blowing ratio, hole spacing, and hole staggering are among the most significant film cooling parameters. Furthermore: (1) The optimum blowing ratios for curved surfaces are higher than those for flat surfaces, (2) a reduction of hole spacing from 3D to 2D resulted in a very significant increase in adiabatic effectiveness, especially on the concave surface, (3) the increase in cooling effectiveness with decreasing hole spacing was found to be due to not only the increased coolant mass per unit area, but also the smaller jet penetration and the weaker counterrotating vortices, (4) for all practical purposes, the hole length was found to be a much less significant film cooling parameter.


Author(s):  
Mulugeta K. Berhe ◽  
Suhas V. Patankar

Computations have been conducted on curved, three-dimensional discrete-hole film cooling geometries that included the mainflow, injection hole, and supply plenum regions. Both convex and concave film cooling geometries were studied. The effects of several film cooling parameters have been investigated, including the effects of blowing ratio, injection angle, hole length, hole spacing, and hole staggering. The blowing ratio was varied from 0.5 to 1.5, the injection angle from 35° to 65°, the hole length from 1.75D to 6.0D, and the hole spacing from 2D to 3D. The staggered-hole arrangement considered included two rows. The computations were performed by solving the fully elliptic, three dimensional Navier-Stokes equations over a body fitted grid. Turbulence closure was achieved using a modified k-ε model in which algebraic relations were used for the turbulent viscosity and the turbulent Prandtl number. The results presented and discussed include plots of adiabatic effectiveness as well as plots of velocity contours and velocity vectors in cross-stream planes. The present study reveals that the blowing ratio, hole spacing, and hole staggering are among the most significant film cooling parameters. Furthermore: (1) the optimum blowing ratios for curved surfaces are higher than those for flat surfaces, (2) a reduction of hole spacing from 3D to 2D resulted in a very significant increase in adiabatic effectiveness, especially on the concave surface, (3) the increase in cooling effectiveness with decreasing hole spacing was found due to not only the increased coolant mass per unit area, but also the smaller jet penetration and the weaker counter-rotating vortices, (4) for all practical purposes, the hole length was found to be a much less significant film cooling parameter.


1997 ◽  
Vol 119 (4) ◽  
pp. 770-776 ◽  
Author(s):  
P. M. Ligrani ◽  
A. E. Ramsey

Experimental results are presented that describe the development and structure of flow downstream of a single row of film-cooling holes inclined at 30 deg from the test surface in spanwise/normal planes. With this configuration, holes are spaced 6d apart in the spanwise direction in a single row. Results are presented for a ratio of injectant density to free-stream density near 1.0, and injection blowing ratios from 0.5 to 1.5. Compared to results measured downstream of simple angle (streamwise) oriented holes, spanwise-averaged adiabatic effectiveness values are significantly higher for the same spanwise hole spacing, normalized streamwise location x/d, and blowing ratio m when m = 1.0 and 1.5 for x/d < 80. The injectant from the spanwise/normal holes is also less likely to lift off of the test surface than injectant from simple angle holes. This is because lateral components of momentum keep higher concentrations of injectant in closer proximity to the surface. As a result, local adiabatic effectiveness values show significantly greater spanwise variations and higher local maxima at locations immediately downstream of the holes. Spanwise-averaged iso-energetic Stanton number ratios range between 1.07 and 1.26, which are significantly higher than values measured downstream of two other injection configurations (one of which is simple angle, streamwise holes) when compared at the same x/d and blowing ratio.


Author(s):  
Rohit A. Oke ◽  
Terrence W. Simon

Temperature fields were taken in a film cooling lateral injection configuration with pitch-to-hole-diameter of 3.0. These measurements were done with a traversing thermocouple. Momentum flux ratios of 0.25, 1.0 and 2.25 were used. Results are presented as fields of dimensionless temperatures, given by θ=Tprobe-T∞Tc-T∞. Near-surface values of this quantity over an unheated surface are adiabatic effectiveness values. Streamwise evolutions of these temperature fields are documented. It is seen how with higher blowing ratio the film cooling jets tend to lift off the surface. Comparisons are made to previous data and computational results. It is verified that lateral injection yields a more uniform distribution of effectiveness immediately downstream of injection. It is shown also how interaction of adjacent film cooling jets leads to such improved uniformity. This interaction depends on the pitch to diameter ratio, P/D. In order to study the effect of this parameter, additional data with P/D = 6.0 are presented. The present thermal field data complement previous velocity field measurements taken in the same flow.


Author(s):  
Robert P. Schroeder ◽  
Karen A. Thole

Film cooling on airfoils is a crucial cooling method as the gas turbine industry seeks higher turbine inlet temperatures. Shaped film cooling holes are widely used in many designs given the improved performance over that of cylindrical holes. Although there have been numerous studies of shaped holes, there is no established baseline shaped hole to which new cooling hole designs can be compared. The goal of this study is to offer the community a shaped hole design, representative of proprietary and open literature holes that serves as a baseline for comparison purposes. The baseline shaped cooling hole design includes the following features: hole inclination angle of 30° with a 7° expansion in the forward and lateral directions; hole length of 6 diameters; hole exit-to-inlet area ratio of 2.5; and lateral hole spacing of 6 diameters. Adiabatic effectiveness was measured with this new shaped hole and was found to peak near a blowing ratio of 1.5 at density ratios of 1.2 and 1.5 as well as at both low and moderate freestream turbulence of 5%. Reductions in area-averaged effectiveness due to freestream turbulence at low blowing ratios were as high as 10%.


Author(s):  
O. Schneider ◽  
H. J. Dohmen ◽  
F. K. Benra ◽  
K. Jarzombek

In the last years the leading manufacturers enhanced the performance of heavy-duty gas turbines rapidly. With the increasing amount of cooling air passing the internal air system, a rising amount of air borne particles are transported to the film cooling holes at the turbine blade surface. Due to the size, these holes are critical for blockage. Experience with gas turbines during operation showed a complex interaction of cooling air under different flow conditions and its particle load. In this paper the results of a new Lagrange-Tracking simulation algorithm based on 3D-Navier-Stokes flow solution are shown for the first time. Compared to previously shown simulations the algorithm is enhanced by models, taking additional, relevant physical effects into account. The new simulation results are compared to experimental results and former simulations.


Sign in / Sign up

Export Citation Format

Share Document