Towards a Numerical Approach of Finding Candidates for Additive Manufacturing-Enabled Part Consolidation

2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Sheng Yang ◽  
Florian Santoro ◽  
Yaoyao Fiona Zhao

Part consolidation (PC) is one of the typical design freedoms enabled by additive manufacturing (AM) processes. However, how to select potential candidates for PC is rarely discussed. This deficiency has hindered AM from wider applications in industry. Currently available design guidelines are based on obsolete heuristic rules provided for conventional manufacturing processes. This paper first revises these rules to take account of AM constraints and lifecycle factors so that efforts can be saved and used at the downstream detailed design stage. To automate the implementation of these revised rules, a numerical approach named PC candidate detection (PCCD) framework is proposed. This framework is comprised of two steps: construct functional and physical interaction (FPI) network and PCCD algorithm. FPI network is to abstractly represent the interaction relations between components as a graph whose nodes and edges have defined physical attributes. These attributes are taken as inputs for the PCCD algorithm to verify conformance to the revised rules. In this PCCD algorithm, verification sequence of rules, conflict handling, and the optimum grouping approach with the minimum part count are studied. Compared to manual ad hoc design practices, the proposed PCCD method shows promise in repeatability, retrievability, and efficiency. Two case studies of a throttle pedal and a tripod are presented to show the application and effectiveness of the proposed methods.

Author(s):  
Sheng Yang ◽  
Yunlong Tang ◽  
Yaoyao Fiona Zhao

The emerging additive manufacturing (AM) technology works in a layer-wise fashion which makes it possible to manipulate material distribution and composition. The resulting effects are reflected on the potential of innovative shape design, consolidated assembly, optimized topology, and functionally graded material. These new characteristics force designers to rethink about how to make a better engineering design. However, existing design theory and methodology cannot take these potentials provided by AM into account. To fill this void, various design for additive manufacturing (DFAM) approaches are reported. Unfortunately, majority of them focused on part-level redesign without potential of being extended to assembly-level applications. In order to shed a light into this emerging field, an overview of current assembly-level DFAM is summarized in this paper. After that, existing issues including the absent analysis of AM’s impact on conceptual design, the lack of explicit functional analysis method, the shortage of decision-making support for part consolidation, the deficiency of functional reasoning approaches to generate AM-enabled features, and the scarcity of integrating manufacturing and assembly knowledge into design stage are analyzed and discussed. However, it seems that addressing these issues is such a large scope that collaborative efforts are in need from both design and manufacturing communities. Therefore, this paper serves as a call to action for the research community to establish a comprehensive assembly-level/ product-level DFAM method to realize product evolution. As an initial benchmark, authors propose a three-stage design methodology on the basis of the Systematic Design approach. In the presented framework, functional analysis, part consolidation, and structural optimization with process knowledge integration are much highlighted. Moreover, a simple redesign case study is exemplified to clarify existing issues and how the benchmark method works. In the end, this paper is wrapped up with future research.


2021 ◽  
Vol 1 ◽  
pp. 231-240
Author(s):  
Laura Wirths ◽  
Matthias Bleckmann ◽  
Kristin Paetzold

AbstractAdditive Manufacturing technologies are based on a layer-by-layer build-up. This offers the possibility to design complex geometries or to integrate functionalities in the part. Nevertheless, limitations given by the manufacturing process apply to the geometric design freedom. These limitations are often unknown due to a lack of knowledge of the cause-effect relationships of the process. Currently, this leads to many iterations until the final part fulfils its functionality. Particularly for small batch sizes, producing the part at the first attempt is very important. In this study, a structured approach to reduce the design iterations is presented. Therefore, the cause-effect relationships are systematically established and analysed in detail. Based on this knowledge, design guidelines can be derived. These guidelines consider process limitations and help to reduce the iterations for the final part production. In order to illustrate the approach, the spare parts production via laser powder bed fusion is used as an example.


e-Polymers ◽  
2020 ◽  
Vol 20 (1) ◽  
pp. 571-599
Author(s):  
Ricardo Donate ◽  
Mario Monzón ◽  
María Elena Alemán-Domínguez

AbstractPolylactic acid (PLA) is one of the most commonly used materials in the biomedical sector because of its processability, mechanical properties and biocompatibility. Among the different techniques that are feasible to process this biomaterial, additive manufacturing (AM) has gained attention recently, as it provides the possibility of tuning the design of the structures. This flexibility in the design stage allows the customization of the parts in order to optimize their use in the tissue engineering field. In the recent years, the application of PLA for the manufacture of bone scaffolds has been especially relevant, since numerous studies have proven the potential of this biomaterial for bone regeneration. This review contains a description of the specific requirements in the regeneration of bone and how the state of the art have tried to address them with different strategies to develop PLA-based scaffolds by AM techniques and with improved biofunctionality.


2021 ◽  
Author(s):  
Heena Noh ◽  
Kijung Park ◽  
Kiwon Park ◽  
Gül E. Okudan Kremer

Abstract Traditional plaster casts often cause dermatitis due to disadvantages in usability and wearability. Additive manufacturing (AM) can fabricate customized casts to have light-weight, high strength, and better air permeability. Although existing studies have provided design for additive manufacturing (DfAM) guidelines to facilitate design applications for AM, most relevant studies focused on the mechanical properties of outputs and too general/specific design guidelines; novice designers may still have difficulty understanding trade-offs between functional and operational performance of various DfAM aspects for medical casts. As a response, this study proposes a DfAM worksheet for medical casts to effectively guide novice designers. First, important DfAM criteria and their possible solutions for medical casts are examined through a literature review to construct a basic DfAM framework for medical casts. Next, a scoring system that considers relative criteria importance and criteria evaluation from both functional and operational perspectives is developed to identify the overall suitability of a medical cast design for AM. A case study of finger cast designs was performed to identify the DfAM performance of the sample designs along with redesign requirements suggested by the worksheet. The proposed worksheet would be used to achieve rapid medical cast design by objectively assessing its suitability for AM.


Author(s):  
Yuanbin Wang ◽  
Robert Blache ◽  
Xun Xu

Additive manufacturing (AM) has experienced a phenomenal expansion in recent years and new technologies and materials rapidly emerge in the market. Design for Additive Manufacturing (DfAM) becomes more and more important to take full advantage of the capabilities provided by AM. However, most people still have limited knowledge to make informed decisions in the design stage. Therefore, an interactive DfAM system in the cloud platform is proposed to enable people sharing the knowledge in this field and guide the designers to utilize AM efficiently. There are two major modules in the system, decision support module and knowledge management module. A case study is presented to illustrate how this system can help the designers understand the capabilities of AM processes and make rational decisions.


Author(s):  
Anil K. Tolpadi ◽  
James A. Tallman ◽  
Lamyaa El-Gabry

Conventional heat transfer design methods for turbine airfoils use 2-D boundary layer codes (BLC) combined with empiricism. While such methods may be applicable in the mid span of an airfoil, they would not be very accurate near the end-walls and airfoil tip where the flow is very three-dimensional (3-D) and complex. In order to obtain accurate heat transfer predictions along the entire span of a turbine airfoil, 3-D computational fluid dynamics (CFD) must be used. This paper describes the development of a CFD based design system to make heat transfer predictions. A 3-D, compressible, Reynolds-averaged Navier-Stokes CFD solver with k-ω turbulence modeling was used. A wall integration approach was used for boundary layer prediction. First, the numerical approach was validated against a series of fundamental airfoil cases with available data. The comparisons were very favorable. Subsequently, it was applied to a real engine airfoil at typical design conditions. A discussion of the features of the airfoil heat transfer distribution is included.


2004 ◽  
Vol 20 (03) ◽  
pp. 147-163
Author(s):  
Osman Turan ◽  
Selim Alkaner ◽  
Aykut i. Ölçer

Ship design today can be viewed as an ad hoc process. It must be considered in the context of integration with other design development activities, such as production, costing, quality control, and so forth. Otherwise, it is possible for the designer to design a ship that is difficult to produce, requires high material or labor cost, or contains some design flaws that the production engineers have to correct or send back for redesigning before production can be done. Any adjustment required after the design stage will result in a penalty of extra time or cost. Deficiencies in the design of a ship will influence the succeeding stages of production. In addition to designing a ship that fulfills producibility requirements, it is also desirable to design a ship that satisfies risk, performance, cost, and customer requirements criteria. More recently, environmental concerns, safety, passenger comfort, and life-cycle issues are becoming essential parts of the current shipbuilding industry. Therefore, "design for X paradigm" should also be considered during the ship design stages. An integrated multiple attributive decision support system for producibility evaluation in ship design (PRODEVIS) is developed to use by industry and researchers in evaluating the producibility of competing ship designs and design features during the early stages of ship design by taking into account cost, performance, risk, and "design for X paradigm" attributes. This developed approach is a fuzzy multiple attributive group decision-making methodology where feasible design alternatives are conducted by a ship production simulation technique. In this approach, an attribute-based aggregation technique for a heterogeneous group of experts is employed and used for dealing with fuzzy opinion aggregation for the subjective attributes of the ship design evaluation problem. The developed methodology is illustrated with a case study.


Author(s):  
Nickolas Viahopoulos ◽  
Edward V. Shalis ◽  
Michael A. Latcha

Abstract During the design stage of ground vehicles it is important to reduce the noise emitted from structural components. In commercial applications the reduction of the interior noise for passenger comfort is a concern with increased significance. In military applications noise radiated from the exterior of the vehicle is of primary importance for the survivability of the vehicle. Numerical acoustic prediction software can be used during the design stage to predict and reduce the radiated noise. Two formulations, the Rayleigh integral equation1 and the direct boundary element method2,3 were implemented into software for acoustic prediction. The developed code can accept information from a finite element model with a known input forcing function. Specifically, the predicted velocities on the structural surfaces can be used as input to the acoustic code for predicting the noise emitted from a vibrating structure. Computation of acoustic sensitivities4 was also implemented in the code. This information can identify the portions of the boundary that effect the radiated noise most, and it can be used in an optimization process to reduce the noise radiated from a vibrating structure.


Author(s):  
Eva Hudlicka

Computational affective models are being developed both to elucidate affective mechanisms, and to enhance believability of synthetic agents and robots. Yet in spite of the rapid growth of computational affective modeling, no systematic guidelines exist for model design and analysis. Lack of systematic guidelines contributes to ad hoc design practices, hinders model sharing and re-use, and makes systematic comparison of existing models and theories challenging. Lack of a common computational terminology also hinders cross-disciplinary communication that is essential to advance our understanding of emotions. In this chapter the author proposes a computational analytical framework to provide a basis for systematizing affective model design by: (1) viewing emotion models in terms of two core types: emotion generation and emotion effects, and (2) identifying the generic computational tasks necessary to implement these processes. The chapter then discusses how these computational ‘building blocks' can support the development of design guidelines, and a systematic analysis of distinct emotion theories and alternative means of their implementation.


2019 ◽  
Vol 27 (4) ◽  
pp. 331-346 ◽  
Author(s):  
Olivia Borgue ◽  
Massimo Panarotto ◽  
Ola Isaksson

For space manufacturers, additive manufacturing promises to dramatically reduce weight and costs by means of integral designs achieved through part consolidation. However, integrated designs hinder the ability to change and service components over time – actually increasing costs – which is instead enabled by highly modular designs. Finding the optimal trade-off between integral and modular designs in additive manufacturing is of critical importance. In this article, a product modularisation methodology is proposed for supporting such trade-offs. The methodology is based on combining function modelling with optimisation algorithms. It evaluates product design concepts with respect to product adaptability, component interface costs, manufacturing costs and cost of post-processing activities. The developed product modularisation methodology is derived from data collected through a series of workshops with industrial practitioners from three different manufacturer companies of space products. The implementation of the methodology is demonstrated in a case study featuring the redesign of a satellite antenna.


Sign in / Sign up

Export Citation Format

Share Document