Development of a Design for Additive Manufacturing Worksheet for Medical Casts

2021 ◽  
Author(s):  
Heena Noh ◽  
Kijung Park ◽  
Kiwon Park ◽  
Gül E. Okudan Kremer

Abstract Traditional plaster casts often cause dermatitis due to disadvantages in usability and wearability. Additive manufacturing (AM) can fabricate customized casts to have light-weight, high strength, and better air permeability. Although existing studies have provided design for additive manufacturing (DfAM) guidelines to facilitate design applications for AM, most relevant studies focused on the mechanical properties of outputs and too general/specific design guidelines; novice designers may still have difficulty understanding trade-offs between functional and operational performance of various DfAM aspects for medical casts. As a response, this study proposes a DfAM worksheet for medical casts to effectively guide novice designers. First, important DfAM criteria and their possible solutions for medical casts are examined through a literature review to construct a basic DfAM framework for medical casts. Next, a scoring system that considers relative criteria importance and criteria evaluation from both functional and operational perspectives is developed to identify the overall suitability of a medical cast design for AM. A case study of finger cast designs was performed to identify the DfAM performance of the sample designs along with redesign requirements suggested by the worksheet. The proposed worksheet would be used to achieve rapid medical cast design by objectively assessing its suitability for AM.

2021 ◽  
Vol 11 (6) ◽  
pp. 2572
Author(s):  
Stefano Rosso ◽  
Federico Uriati ◽  
Luca Grigolato ◽  
Roberto Meneghello ◽  
Gianmaria Concheri ◽  
...  

Additive Manufacturing (AM) brought a revolution in parts design and production. It enables the possibility to obtain objects with complex geometries and to exploit structural optimization algorithms. Nevertheless, AM is far from being a mature technology and advances are still needed from different perspectives. Among these, the literature highlights the need of improving the frameworks that describe the design process and taking full advantage of the possibilities offered by AM. This work aims to propose a workflow for AM guiding the designer during the embodiment design phase, from the engineering requirements to the production of the final part. The main aspects are the optimization of the dimensions and the topology of the parts, to take into consideration functional and manufacturing requirements, and to validate the geometric model by computer-aided engineering software. Moreover, a case study dealing with the redesign of a piston rod is presented, in which the proposed workflow is adopted. Results show the effectiveness of the workflow when applied to cases in which structural optimization could bring an advantage in the design of a part and the pros and cons of the choices made during the design phases were highlighted.


Author(s):  
Yuanbin Wang ◽  
Robert Blache ◽  
Xun Xu

Additive manufacturing (AM) has experienced a phenomenal expansion in recent years and new technologies and materials rapidly emerge in the market. Design for Additive Manufacturing (DfAM) becomes more and more important to take full advantage of the capabilities provided by AM. However, most people still have limited knowledge to make informed decisions in the design stage. Therefore, an interactive DfAM system in the cloud platform is proposed to enable people sharing the knowledge in this field and guide the designers to utilize AM efficiently. There are two major modules in the system, decision support module and knowledge management module. A case study is presented to illustrate how this system can help the designers understand the capabilities of AM processes and make rational decisions.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Rohan Prabhu ◽  
Jordan Scott Masia ◽  
Joseph T. Berthel ◽  
Nicholas Alexander Meisel ◽  
Timothy W. Simpson

Purpose The COVID-19 pandemic has resulted in numerous innovative engineering design solutions, several of which leverage the rapid prototyping and manufacturing capabilities of additive manufacturing. This paper aims to study a subset of these solutions for their utilization of design for AM (DfAM) techniques and investigate the effects of DfAM utilization on the creativity and manufacturing efficiency of these solutions. Design/methodology/approach This study compiled 26 COVID-19-related solutions designed for AM spanning three categories: (1) face shields (N = 6), (2) face masks (N = 12) and (3) hands-free door openers (N = 8). These solutions were assessed for (1) DfAM utilization, (2) manufacturing efficiency and (3) creativity. The relationships between these assessments were then computed using generalized linear models to investigate the influence of DfAM utilization on manufacturing efficiency and creativity. Findings It is observed that (1) unique and original designs scored lower in their AM suitability, (2) solutions with higher complexity scored higher on usefulness and overall creativity and (3) solutions with higher complexity had higher build cost, build time and material usage. These findings highlight the need to account for both opportunistic and restrictive DfAM when evaluating solutions designed for AM. Balancing the two DfAM perspectives can support the development of solutions that are creative and consume fewer build resources. Originality/value DfAM evaluation tools primarily focus on AM limitations to help designers avoid build failures. This paper proposes the need to assess designs for both, their opportunistic and restrictive DfAM utilization to appropriately assess the manufacturing efficiency of designs and to realize the creative potential of adopting AM.


2019 ◽  
Vol 27 (4) ◽  
pp. 331-346 ◽  
Author(s):  
Olivia Borgue ◽  
Massimo Panarotto ◽  
Ola Isaksson

For space manufacturers, additive manufacturing promises to dramatically reduce weight and costs by means of integral designs achieved through part consolidation. However, integrated designs hinder the ability to change and service components over time – actually increasing costs – which is instead enabled by highly modular designs. Finding the optimal trade-off between integral and modular designs in additive manufacturing is of critical importance. In this article, a product modularisation methodology is proposed for supporting such trade-offs. The methodology is based on combining function modelling with optimisation algorithms. It evaluates product design concepts with respect to product adaptability, component interface costs, manufacturing costs and cost of post-processing activities. The developed product modularisation methodology is derived from data collected through a series of workshops with industrial practitioners from three different manufacturer companies of space products. The implementation of the methodology is demonstrated in a case study featuring the redesign of a satellite antenna.


Author(s):  
Matthew R. Woods ◽  
Nicholas A. Meisel ◽  
Timothy W. Simpson ◽  
Corey J. Dickman

Prior research has shown that powder bed fusion additive manufacturing (AM) can be used to make functional, end-use components from powdered metallic alloys, such as Inconel® 718 super alloy. However, these end-use products are often based on designs developed for more traditional subtractive manufacturing processes without taking advantage of the unique design freedoms afforded by AM. In this paper, we present a case study involving the redesign of NASA’s existing “Pencil” thruster used for spacecraft attitude control. The initial “Pencil” thruster was designed for, and manufactured using, traditional subtractive methods. The main focus in this paper is to (a) review the Design for Additive Manufacturing (DfAM) concepts and considerations used in redesigning the thruster and (b) compare it with a parallel development effort redesigning the original thruster to be manufactured more effectively using subtractive processes. The results from this study show how developing end-use AM components using DfAM guidelines can significantly reduce manufacturing time and costs while introducing new and novel design geometries.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Floriane Laverne ◽  
Frédéric Segonds ◽  
Nabil Anwer ◽  
Marc Le Coq

Additive manufacturing (AM) is emerging as an important manufacturing process and a key technology for enabling innovative product development. Design for additive manufacturing (DFAM) is nowadays a major challenge to exploit properly the potential of AM in product innovation and product manufacturing. However, in recent years, several DFAM methods have been developed with various design purposes. In this paper, we first present a state-of-the-art overview of the existing DFAM methods, then we introduce a classification of DFAM methods based on intermediate representations (IRs) and product's systemic level, and we make a comparison focused on the prospects for product innovation. Furthermore, we present an assembly based DFAM method using AM knowledge during the idea generation process in order to develop innovative architectures. A case study demonstrates the relevance of such approach. The main contribution of this paper is an early DFAM method consisting of four stages as follows: choice and development of (1) concepts, (2) working principles, (3) working structures, and (4) synthesis and conversion of the data in design features. This method will help designers to improve their design features, by taking into account the constraints of AM in the early stages.


Author(s):  
Bradley Hanks ◽  
Mary Frecker

Abstract Additive manufacturing is a developing technology that enhances design freedom at multiple length scales, from the macroscale, or bulk geometry, to the mesoscale, such as lattice structures, and even down to tailored microstructure. At the mesoscale, lattice structures are often used to replace solid sections of material and are typically patterned after generic topologies. The mechanical properties and performance of generic unit cell topologies are being explored by many researchers but there is a lack of development of custom lattice structures, optimized for their application, with considerations for design for additive manufacturing. This work proposes a ground structure topology optimization method for systematic unit cell optimization. Two case studies are presented to demonstrate the approach. Case Study 1 results in a range of unit cell designs that transition from maximum thermal conductivity to minimization of compliance. Case Study 2 shows the opportunity for constitutive matching of the bulk lattice properties to a target constitutive matrix. Future work will include validation of unit cell modeling, testing of optimized solutions, and further development of the approach through expansion to 3D and refinement of objective, penalty, and constraint functions.


2021 ◽  
pp. 1-47
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
Mariusz Deja ◽  
Dawid Zielinski ◽  
Mohd Rizal Alkahari

Abstract The design for additive manufacturing (DFAM) processing was introduced to fully utilise the design freedom provided by additive manufacturing (AM). Consequently, appropriate design methodologies have become essential for this technology. Recently, many studies have identified the importance of DFAM method utilisation to produce AM parts, and TRIZ is a strategy used to formalise design methodologies. TRIZ is a problem-solving tool developed to assist designers to find innovative and creative solutions. However, the pathway for synergising TRIZ and DFAM is not clearly explained with respect to AM capabilities and complexities. This is mainly because most methods continue to involve use of the classical TRIZ principle, which was developed early in 1946, 40 years before AM technologies were introduced in the mid-1980s. Therefore, to tackle this issue, this study aims to enhance the 40 principles of classical TRIZ to accommodate AM design principles. A modified TRIZ-AM principle has been developed to define the pathway to AM solutions. TRIZ-AM cards are tools that assist designers to select inventive principles (IPs) in the early phases of product design and development. The case study illustrates that even inexperienced AM users can creatively design innovative AM parts.


2019 ◽  
Vol 25 (6) ◽  
pp. 1069-1079 ◽  
Author(s):  
James I. Novak ◽  
Jonathon O’Neill

Purpose This paper aims to present new qualitative and quantitative data about the recently released “BigRep ONE” 3 D printer led by the design of a one-off customized stool. Design/methodology/approach A design for additive manufacturing (DfAM) framework was adopted, with simulation data iteratively informing the final design. Findings Process parameters can vary manufacturing costs of a stool by over AU$1,000 and vary print time by over 100 h. Following simulation, designers can use the knowledge to inform iteration, with a second variation of the design being approximately 50 per cent cheaper and approximately 50 per cent faster to manufacture. Metrology data reveal a tolerance = 0.342 per cent in overall dimensions, and surface roughness data are presented for a 0.5 mm layer height. Research limitations/implications Led by design, this study did not seek to explore the full gamut of settings available in slicing software, focusing predominantly on nozzle diameter, layer height and number of walls alongside the recommended settings from BigRep. The study reveals numerous areas for future research, including more technical studies. Practical implications When knowledge and techniques from desktop 3 D printing are scaled up to dimensions measuring in meters, new opportunities and challenges are presented for design engineers. Print times and material costs in particular are scaled up significantly, and this study provides numerous considerations for research centers, 3 D printing bureaus and manufacturers considering large-scale fused filament fabrication manufacturing. Originality/value This is the first peer-reviewed study involving the BigRep ONE, and new knowledge is presented about the practical application of the printer through a design-led project. Important relationships between material volume/cost and print time are valuable for early adopters.


Sign in / Sign up

Export Citation Format

Share Document