Modular product design for additive manufacturing of satellite components: maximising product value using genetic algorithms

2019 ◽  
Vol 27 (4) ◽  
pp. 331-346 ◽  
Author(s):  
Olivia Borgue ◽  
Massimo Panarotto ◽  
Ola Isaksson

For space manufacturers, additive manufacturing promises to dramatically reduce weight and costs by means of integral designs achieved through part consolidation. However, integrated designs hinder the ability to change and service components over time – actually increasing costs – which is instead enabled by highly modular designs. Finding the optimal trade-off between integral and modular designs in additive manufacturing is of critical importance. In this article, a product modularisation methodology is proposed for supporting such trade-offs. The methodology is based on combining function modelling with optimisation algorithms. It evaluates product design concepts with respect to product adaptability, component interface costs, manufacturing costs and cost of post-processing activities. The developed product modularisation methodology is derived from data collected through a series of workshops with industrial practitioners from three different manufacturer companies of space products. The implementation of the methodology is demonstrated in a case study featuring the redesign of a satellite antenna.

2021 ◽  
Author(s):  
Heena Noh ◽  
Kijung Park ◽  
Kiwon Park ◽  
Gül E. Okudan Kremer

Abstract Traditional plaster casts often cause dermatitis due to disadvantages in usability and wearability. Additive manufacturing (AM) can fabricate customized casts to have light-weight, high strength, and better air permeability. Although existing studies have provided design for additive manufacturing (DfAM) guidelines to facilitate design applications for AM, most relevant studies focused on the mechanical properties of outputs and too general/specific design guidelines; novice designers may still have difficulty understanding trade-offs between functional and operational performance of various DfAM aspects for medical casts. As a response, this study proposes a DfAM worksheet for medical casts to effectively guide novice designers. First, important DfAM criteria and their possible solutions for medical casts are examined through a literature review to construct a basic DfAM framework for medical casts. Next, a scoring system that considers relative criteria importance and criteria evaluation from both functional and operational perspectives is developed to identify the overall suitability of a medical cast design for AM. A case study of finger cast designs was performed to identify the DfAM performance of the sample designs along with redesign requirements suggested by the worksheet. The proposed worksheet would be used to achieve rapid medical cast design by objectively assessing its suitability for AM.


Author(s):  
Lora A. Oehlberg ◽  
Alice M. Agogino ◽  
Sara L. Beckman

Engineers today have access to a myriad of tools for developing sustainable products that have minimal environmental impact. Although consumer interest in sustainability is increasing, it is still not foremost on the minds of many consumers. Engineers are thus faced with the dilemma of developing sustainable solutions for consumers who may not yet want or be able to articulate sustainability needs. We explore this issue by examining user research conducted by students in a graduate-level product design course. We present findings on how users define and describe sustainability, how sustainability needs interact with other user needs, and what tradeoffs people make and feelings people have when faced with sustainability trade-offs. We present a case study of one design team’s findings about sustainability, and how those findings affected the formulation of the team’s mission statement and product strategy. Based on these results, we propose recommendations for how to facilitate the design of innovative and sustainable consumer products.


Author(s):  
Junfeng Ma ◽  
Gül E. Okudan Kremer

Sustainability has been the emphasis of intense discussion over recent decades, but mostly focused on addressing critical aspects of environmental issues. An increasing awareness of social responsibilities and ever-shifting customer requirements have led manufacturers to consider social sustainability during the design phase in tandem with addressing environmental concerns; thus, design for social sustainability has evolved as a new product design direction. Modular product design (MPD), has been widely used in both academia and industry because of its significant benefits in design engineering. Because of the potential synergy, investigating design for social sustainability in association with MPD holds promise as a field of investigation. In this paper, we introduce a novel MPD approach that uses the elements of key component specification and product impact on social sustainability. The key components carry core technologies or have the highest sustainability effects in a product (i.e., the most costly or environmentally polluting parts). Product competitiveness strongly relies on a few key components that should be a focal point during product development. However, to the best of our knowledge, key components have not been well addressed in modular product design. In this paper, we employ labor time as an indicator to measure social sustainability. A heuristic-based clustering algorithm with labor time optimization is developed to categorize components into modules. A coffee-maker case study is conducted to demonstrate the applicability of the proposed methodology.


2009 ◽  
Vol 2009.19 (0) ◽  
pp. 259-261
Author(s):  
Akihiro Hirao ◽  
Tsuyoshi Koga ◽  
Takashi Niwa ◽  
Kazuya Oizumi ◽  
Kazuhiro Aoyama

Designs ◽  
2018 ◽  
Vol 2 (4) ◽  
pp. 37 ◽  
Author(s):  
Charul Chadha ◽  
Kathryn Crowe ◽  
Christina Carmen ◽  
Albert Patterson

This work explores an additive-manufacturing-enabled combination-of-function approach for design of modular products. AM technologies allow the design and manufacturing of nearly free-form geometry, which can be used to create more complex, multi-function or multi-feature parts. The approach presented here replaces sub-assemblies within a modular product or system with more complex consolidated parts that are designed and manufactured using AM technologies. This approach can increase the reliability of systems and products by reducing the number of interfaces, as well as allowing the optimization of the more complex parts during the design. The smaller part count and the ability of users to replace or upgrade the system or product parts on-demand should reduce user risk, life-cycle costs, and prevent obsolescence for the user of many systems. This study presents a detailed review on the current state-of-the-art in modular product design in order to demonstrate the place, need and usefulness of this AM-enabled method for systems and products that could benefit from it. A detailed case study is developed and presented to illustrate the concepts.


2021 ◽  
pp. 1-47
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
Mariusz Deja ◽  
Dawid Zielinski ◽  
Mohd Rizal Alkahari

Abstract The design for additive manufacturing (DFAM) processing was introduced to fully utilise the design freedom provided by additive manufacturing (AM). Consequently, appropriate design methodologies have become essential for this technology. Recently, many studies have identified the importance of DFAM method utilisation to produce AM parts, and TRIZ is a strategy used to formalise design methodologies. TRIZ is a problem-solving tool developed to assist designers to find innovative and creative solutions. However, the pathway for synergising TRIZ and DFAM is not clearly explained with respect to AM capabilities and complexities. This is mainly because most methods continue to involve use of the classical TRIZ principle, which was developed early in 1946, 40 years before AM technologies were introduced in the mid-1980s. Therefore, to tackle this issue, this study aims to enhance the 40 principles of classical TRIZ to accommodate AM design principles. A modified TRIZ-AM principle has been developed to define the pathway to AM solutions. TRIZ-AM cards are tools that assist designers to select inventive principles (IPs) in the early phases of product design and development. The case study illustrates that even inexperienced AM users can creatively design innovative AM parts.


Author(s):  
Sandra Eilmus ◽  
Dieter Krause

To reach many customers and have a broad range of products at marketable prices companies aim for high commonality across product variants. Commonality is known as the sharing of components by product variants. But using the same components for different product variants can also lead to trade-offs in product function and fulfillment of customer requirements as well as in internal processes. The aim of this paper is to investigate by literature review and a case study on forklift trucks how benefits and trade-offs can be balanced according to corporate needs. Existing tools from the Integrated PKT-Approach for Developing Modular Product Families are applied and advanced in the case study. Practical examples demonstrate that commonality is a gradual property that can be given to variant components as well and that it is influenced by the modular structure and how components are handled as modules in different life phases. New product concepts with enhanced commonality are derived and evaluated by estimating the created lot size caused and code number caused costs.


2021 ◽  
Author(s):  
Caitlin Robinson ◽  
Rachel S. Franklin ◽  
Jack Roberts

Abstract Decisions about sensor placement in cities are inherently complex, balancing structural inequalities with the differential needs of populations, local stakeholder priorities and the technical specificities of the sensors themselves. Rapid developments in urban data collection and Geographic Data Science have the potential to support these decision-making processes, yet even the most cutting-edge algorithms cannot deliver on complete and equitable sensor coverage. Focusing on a case study of air-quality sensors in Newcastle-upon-Tyne (UK), we employ spatial optimisation algorithms as a descriptive tool to illustrate the complex trade-offs that produce sensor networks that miss important groups—even when the explicit coverage goal is one of equity. The problem is not technical; rather it is demographic, structural and financial. Despite the considerable constraints that emerge from our analysis, we argue the data collected via sensor networks is of continued importance when evidencing core urban injustices (e.g., air pollution or climate-related heat). We therefore make the case for a clearer distinction to be made between sensors for monitoring and sensors for surveillance, arguing that a wider presumption of bad intent for all sensors potentially limits the visibility of positive types of sensing. For the purpose of monitoring, we also propose that basic spatial optimisation tools can help to elucidate and remediate spatial injustices in sensor networks.


Sign in / Sign up

Export Citation Format

Share Document