scholarly journals LesionAir: An Automated, Low-Cost Vision-Based Skin Cancer Diagnostic Tool

2018 ◽  
Vol 12 (2) ◽  
Author(s):  
Tyler D. Wortman ◽  
Jay D. Carlson ◽  
Edward Perez ◽  
Alexander H. Slocum

Current techniques for diagnosing skin cancer lack specificity and sensitivity, resulting in unnecessary biopsies and missed diagnoses. Automating tissue palpation and morphology quantification will result in a repeatable, objective process. LesionAir is a low-cost skin cancer diagnostic tool that measures the full-field compliance of tissue by applying a vacuum force and measuring the precise deflection using structured light three-dimensional (3D) reconstruction. The technology was tested in a benchtop setting on phantom skin and in a small clinical study. LesionAir has been shown to measure deflection with a 0.085 mm root-mean-square (RMS) error and measured the stiffness of phantom tissue to within 20% of finite element analysis (FEA) predictions. After biopsy and analysis, a dermatopathologist confirmed the diagnosis of skin cancer in tissue that LesionAir identified as noticeably stiffer and the regions of this stiffer tissue aligned with the bounds of the lesion. A longitudinal, full-scale study is required to determine the clinical efficacy of the device. This technology shows initial promise as a low-cost tool that could rapidly identify and diagnose skin cancer.

Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Author(s):  
Ding-jian Huang ◽  
Li-gang Yao ◽  
Wen-jian Li ◽  
Jun Zhang

Purpose The purpose of this research is to achieve a novel magnetic nutation drive for an industry robotic wrist reducer. Design/methodology/approach A novel magnetic nutation drive is proposed, and the structure and principle of the designed magnetic nutation drive are described in this study. Three-dimensional finite element analysis is used to compute the magnetic and torque of the magnetic nutation drive. Furthermore, a prototype of this novel magnetic nutation drive device is developed with 3D printing technology and tested to verify the feasibility of the proposed structure and principle. Findings The simulation and experimental results indicated that the proposed magnetic nutation drive device could meet the desired specifications, and that this novel magnetic nutation drive device successfully realized the non-contact transmission ratio of 105:1 required for a robotic wrist reducer. Practical implications This novel magnetic nutation drive is low-cost and easy to make and use, and which provides the non-contact transmission ratio of 105:1 required for a robotic wrist reducer. Originality/value For the first time, this research applies the permanent magnet drive technology to nutation drive and puts forward a new non-contact nutation drive mode. The novel drive mode can solve some problems of the traditional mechanical contact nutation drive, such as vibration, friction loss, mechanical fatigue and necessity of lubrication. The proposed non-contact nutation drive device can achieve a high reduction ratio with compact structure and can be suitable for industry application.


2016 ◽  
Vol 698 ◽  
pp. 171-176 ◽  
Author(s):  
Yasushi Yuminaka ◽  
Tomoaki Mori ◽  
Kentaro Watanabe ◽  
Makoto Hasegawa ◽  
Kenji Shirakura

The development of a low-cost noninvasive motion capture device for use in physiotherapy clinics and as a diagnostic tool attracts enormous attention. In this study, we aimed to investigate the feasibility of medical and healthcare applications of the Kinect v2 motion capture devices based on practical medical needs. In particular, we developed three applications: a non-contact respiration monitoring system for the diagnosis of COPD, a rehabilitation assistance system, and a three-dimensional skeletal motion viewer system.


2019 ◽  
Vol 8 (4) ◽  
pp. 4544-4547

Total hip replacement (THR) is the most popular surgery been performed in orthopedic surgery due to the inclination of musculoskeletal disorder and the aging population worldwide. However, the implant’s cost-burdened the patient, especially in the ASEAN region. The main objective of this study was to fabricate the low-cost hip implant using direct laser metal sintering (DMLS). The framework starts with the three dimensional of hip anthropometric datasets from computed tomography scanner, followed with the design of hip implant, computational analysis using finite element, and finally fabrication using DMLS technique. The morphological results demonstrated the value of neck-shaft angle was 130.46º, and the femoral head offset of 30.35 mm. The finite element analysis showed strain distribution was 65 MPa for the implant in metaphyseal region and 110 MPa for intact femur under staircase physiological loading which indicated inhibition of stress shielding at medical calcar region, and micromotion was 4.8 µm which prevent the formation of fibrous tissue and promoting osseointegration between implant-bone interfaces. This study proposed the fabrication using the DMLS technique, which produced accurate implant with low-cost, which suits the ASEAN hip morphology that prolongs implant lifetime.


Cellulose ◽  
2020 ◽  
Vol 27 (12) ◽  
pp. 6777-6792
Author(s):  
N. H. Vonk ◽  
N. A. M. Verschuur ◽  
R. H. J. Peerlings ◽  
M. G. D. Geers ◽  
J. P. M. Hoefnagels

Abstract Over the past decades, natural fibers have become an important constituent in multiple engineering- and biomaterials. Their high specific strength, biodegradability, low-cost production, recycle-ability, vast availability and easy processing make them interesting for many applications. However, fiber swelling due to moisture uptake poses a key challenge, as it significantly affects the geometric stability and mechanical properties. To characterize the hygro-mechanical behavior of fibers in detail, a novel micromechanical characterization method is proposed which allows continuous full-field fiber surface displacement measurements during wetting and drying. A single fiber is tested under an optical height microscope inside a climate chamber wherein the relative humidity is changed to capture the fiber swelling behavior. These fiber topographies are, subsequently, analyzed with an advanced Global Digital Height Correlation methodology dedicated to extract the full three-dimensional fiber surface displacement field. The proposed method is validated on four different fibers: flat viscose, trilobal viscose, 3D-printed hydrogel and eucalyptus, each having different challenges regarding their geometrical and hygroscopic properties. It is demonstrated that the proposed method is highly robust in capturing the full-field fiber kinematics. A precision analysis shows that, for eucalyptus, at 90% relative humidity, an absolute surface strain precision in the longitudinal and transverse directions of, respectively, 1.2 × 10-4 and 7 × 10-4 is achieved, which is significantly better than existing techniques in the literature. The maximum absolute precision in both directions for the other three tested fibers is even better, demonstrating that this method is versatile for precise measurements of the hygro-expansion of a wide range of fibers. Graphic abstract


2021 ◽  
Vol 2130 (1) ◽  
pp. 012013
Author(s):  
D Stefańczak ◽  
J Gajewski ◽  
M Rogala

Abstract AFO (Ankle-Foot Orthosis), which covers the ankle and foot, protects and supports the ankle joint as well as the structures around it. It contributes to the maintenance of the correct gait cycle. Owing to orthoses, the functional capacity of the body part is significantly improved, and so is the quality of life for the user. Personalized orthoses, which are adapted to the anatomy of the user, are more and more often produced by the additive methods. The use of 3D printing for the manufacturing medical devices is becoming increasingly common due to the low cost of the whole process, short production time and the possibility of the product personalization. One of the stages in manufacturing AFOs with the additive method is to create a three-dimensional model of the orthosis in CAD software. Finite element analysis was performed to assess the mechanical properties of the orthosis. The influence of geometry and the materials used were investigated with FEM analysis software. As a result of structural analysis during the design stage, the assessment of the medical device in terms of its durability and mechanical resistance without putting the user at risk is possible. On the basis of the obtained results, the structure strength was compared.


2020 ◽  
Vol 1 (2) ◽  
pp. 31-37
Author(s):  
Anwar Khitab

Human population is growing around the world day by day, necessitating highly sustainable and energy efficient building systems. In conventional building systems, significant amount of energy is consumed for providing thermal comfort to the occupants. Materials used for thermal insulation not only increase the cost of the buildings but also increase the dead weight. Structural concrete insulated panel system (SCIP) provide thermally efficient, light weight, and low-cost solution as compared to the conventional systems. SCIP system is new innovation in which, insulation material is placed between two layers of concrete. Due to low weight, it can be easily handled and transported to project sites. In present research, the performance of SCIP walls in a typical school double story building is examined by three-dimensional finite element analysis, using SAP2000. The response is evaluated by varying the thickness of the insulation layer in terms of safety and serviceability. The results show that the buildings incorporating SCIPs are capable to withstand high dynamic and earthquake loads and are significantly economical as compared to the conventional building systems.


Author(s):  
Young Seok Oh ◽  
Woo Ho Lee ◽  
Harry E. Stephanou ◽  
George D. Skidmore

Recent progress of MEMS technology enables the mass production of microdevices with low cost. However, methods for designing microgrippers and microdevice assembly processes have not been studied extensively. This paper presents the design and optimization of compliant microgripper, and snap-fit based microassembly experiments. A key issue of microassembly is to design a microgripper that is capable of handling and manipulating microparts with positional uncertainty and the lack of sensory information. Topology optimization is used to design compliant microgrippers that can produce a large opening at the tip or a gripper, and Finite Element Analysis (FEA) is performed to evaluate the characteristics of grippers. Compliant microgripper driven by the embedded thermal actuator and snap-connectors were fabricated using deep reactive ion etching (DRIE) process with Silicon On Insulator (SOI) wafer. With a fabricated microgripper and several snap-fits, the assembly of a three dimensional microstructure was successfully demonstrated.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 3130 ◽  
Author(s):  
Luis Felipe-Sesé ◽  
Ángel Molina-Viedma ◽  
Elías López-Alba ◽  
Francisco Díaz

Three-dimensional digital image correlation (3D-DIC) has become the most popular full-field optical technique for measuring 3D shapes and displacements in experimental mechanics. The integration of fringe projection (FP) and two-dimensional digital image correlation (FP + DIC) has been recently established as an intelligent low-cost alternative to 3D-DIC, overcoming the drawbacks of a stereoscopic system. Its experimentation is based on the colour encoding of the characterized fringe and speckle patterns required for FP and DIC implementation, respectively. In the present work, innovations in experimentation using FP + DIC for more accurate results are presented. Specifically, they are based on the improvement of the colour pattern encoding. To achieve this, in this work, a multisensor camera and/or laser structural illumination were employed. Both alternatives are analysed and evaluated. Results show that improvements both in three-dimensional and in-plane displacement are obtained with the proposed alternatives. Nonetheless, multisensor high-speed cameras are uncommon, and laser structural illumination is established as an important improvement when low uncertainty is required for 2D-displacement measurement. Hence, the uncertainty has been demonstrated to be reduced by up to 50% compared with results obtained in previous experimental approaches of FP + DIC.


Sign in / Sign up

Export Citation Format

Share Document