Design of Magnetic Bearing Control System Based on Active Disturbance Rejection Theory

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Chaowu Jin ◽  
Kaixuan Guo ◽  
Yuanping Xu ◽  
Hengbin Cui ◽  
Longxiang Xu

At present, most of the magnetic bearing system adopts the classical proportional–integral–derivative (PID) control strategy. However, the external disturbances, system parameter perturbations, and many other uncertain disturbances result in PID controller difficult to achieve high performance. To solve this problem, a linear active disturbance rejection controller (LADRC) based on active disturbance rejection controller (ADRC) theory was designed for magnetic bearing. According to the actual prototype parameters, the simulation model was built in matlab/simulink. The step and sinusoidal disturbances with PID and LADRC control strategies were simulated and compared. Then, the experiments of step and sinusoidal disturbances were performed. When control parameters are consistent, the experiment showed that the rotor displacement fluctuation decreased by 28.6% using the LADRC than PID control under step disturbances and decreased by around 25.8% under sinusoidal disturbances. When the rotor is running at 24,000 r/min and 27,000 r/min, the displacement of rotor is reduced by around 15% and 13.7%, respectively. Rotate the rotor with step disturbances and sinusoidal disturbances. It can also be seen that LADRC has the advantages of fast response time and good anti-interference. The experiments indicate that the LADRC has better anti-interference performance compared with PID controller.

Entropy ◽  
2021 ◽  
Vol 23 (3) ◽  
pp. 262
Author(s):  
Pengchong Chen ◽  
Ying Luo ◽  
Yibing Peng ◽  
Yangquan Chen

In this paper, a fractional-order active disturbance rejection controller (FOADRC), combining a fractional-order proportional derivative (FOPD) controller and an extended state observer (ESO), is proposed for a permanent magnet synchronous motor (PMSM) speed servo system. The global stable region in the parameter (Kp, Kd, μ)-space corresponding to the observer bandwidth ωo can be obtained by D-decomposition method. To achieve a satisfied tracking and anti-load disturbance performance, an optimal ADRC tuning strategy is proposed. This tuning strategy is applicable to both FOADRC and integer-order active disturbance rejection controller (IOADRC). The tuning method not only meets user-specified frequency-domain indicators but also achieves a time-domain performance index. Simulation and experimental results demonstrate that the proposed FOADRC achieves better speed tracking, and more robustness to external disturbance performances than traditional IOADRC and typical Proportional-Integral-Derivative (PID) controller. For example, the JITAE for speed tracking of the designed FOADRC are less than 52.59% and 55.36% of the JITAE of IOADRC and PID controller, respectively. Besides, the JITAE for anti-load disturbance of the designed FOADRC are less than 17.11% and 52.50% of the JITAE of IOADRC and PID controller, respectively.


Robotica ◽  
2020 ◽  
pp. 1-26
Author(s):  
Tao Xue ◽  
ZiWei Wang ◽  
Tao Zhang ◽  
Ou Bai ◽  
Meng Zhang ◽  
...  

SUMMARY Accurate torque control is a critical issue in the compliant human–robot interaction scenario, which is, however, challenging due to the ever-changing human intentions, input delay, and various disturbances. Even worse, the performances of existing control strategies are limited on account of the compromise between precision and stability. To this end, this paper presents a novel high-performance torque control scheme without compromise. In this scheme, a new nonlinear disturbance observer incorporated with equivalent control concept is proposed, where the faster convergence and stronger anti-noise capability can be obtained simultaneously. Meanwhile, a continuous fractional power control law is designed with an iteration method to address the matched/unmatched disturbance rejection and global finite-time convergence. Moreover, the finite-time stability proof and prescribed control performance are guaranteed using constructed Lyapunov function with adding power integrator technique. Both the simulation and experiments demonstrate enhanced control accuracy, faster convergence rate, perfect disturbance rejection capability, and stronger robustness of the proposed control scheme. Furthermore, the evaluated assistance effects present improved gait patterns and reduced muscle efforts during walking and upstair activity.


2012 ◽  
Vol 472-475 ◽  
pp. 1036-1039
Author(s):  
Chong Yang ◽  
Ke Zhang ◽  
Mei Bai Lu

First a new autopilot design model is presented for the interceptor missile with the blended aerodynamic lift and reaction jet. The reaction jet can improve the response speed, but the structure of control system becomes more complex. Therefore how to design control strategy properly is an urgent problem. Second, considering the discrete property of the lateral pulse jet thrusters and the continuous property of the aerodynamic fins, a kind of ADRC (active disturbance rejection control) autopilot system was designed for the aerodynamic lift/reaction jet missile. Finally, through a testing in the simulation of MATLAB, it is shown that, due to the sufficient utilization of the reaction jet, there is a significant improvement in the fast response and robust performance of the proposed controller. It is applicable to design the autopilot of aerodynamic lift and reaction jet blended missile.


2011 ◽  
Vol 383-390 ◽  
pp. 358-365 ◽  
Author(s):  
Fu Lin Teng ◽  
Hong Yu Ge ◽  
Hong Sheng Li ◽  
Jian Hua Zhang

Modern spacecraft demands from an attitude control system very high performance and accuracy, and many new features, such as disturbance rejection capability. The recently developed active disturbance rejection control technology is applied to the attitude control of spacecraft subject to disturbances and parametric uncertainties. Simulation and experiment show significant advantages of the proposed attitude controller over the controller resulting from conventional PID approach.


Author(s):  
Zhang He ◽  
Zhao Jiyun ◽  
Wang Yunfei ◽  
Zhang Zhonghai ◽  
Ding Haigang ◽  
...  

This study proposes a compound control method based on sliding mode and active disturbance rejection control to address the difficulty of controlling the cutting head for boom-type roadheader with parameter changes and uncertain disturbances. The fastest discrete tracking differentiator and extended state observer based on the traditional active disturbance rejection control are designed. Additionally, the controller of the sliding mode and active disturbance rejection control is constructed. Theoretical analysis indicates that the proposed controller ensures asymptotic stability, despite the existing uncertain disturbances. Moreover, a system based on AMESim and MATLAB/Simulink Co-simulation model is developed to further verify the performance of proposed algorithm. Compared with traditional active disturbance rejection control, proportional-integral-derivative(PID) and sliding mode control, co-simulation results demonstrate that the sliding mode active disturbance rejection compound control improves the tracking accuracy and robustness of the position servo system.


2018 ◽  
Vol 51 (4) ◽  
pp. 444-449 ◽  
Author(s):  
J.J. Carreño-Zagarra ◽  
R. Villamizar ◽  
J.C. Moreno ◽  
J.L. Guzmán

2019 ◽  
Vol 103 (1) ◽  
pp. 003685041988356
Author(s):  
Nan Sang ◽  
Lele Chen

A linear vehicle model is commonly employed in the controller design for an active front steering (AFS). However, this simplified model has a considerable influence on the accuracy of the controller. In this article, an AFS controller using an active disturbance rejection control (ADRC) technique is proposed to prevent this problem. The AFS controller was established in MATLAB/Simulink to control the CarSim vehicle model for verification of the simulation. Under the straight-line driving disturbance condition, proportion-integration-differentiation (PID) control and ARDC substantially decreased with respect to the uncontrolled lateral offset and ADRC performed better than PID control. Under the double lane change (DLC) test working condition, the tracking error of the path, yaw rate, roll angle, and lateral acceleration, and error of the driving direction were used to evaluate the vehicle’s controllability and stability. These evaluation indexes were substantially improved by PID control and ADRC; similarly, ADRC was better than PID control. The tracking error of the ADRC in the presence of parameter variance and external disturbance was significantly smaller than that of PID control. The results have verified that the AFS controller based on ADRC can significantly improve vehicle controllability and stability.


2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Nixuan Liu ◽  
Siqi Cao ◽  
Juntao Fei

This paper proposed a fractional-order PID controller and active disturbance rejection control (ADRC) method for the current compensation of active power filter (APF). The control method consists of two closed loops. One is a reference current tracking loop based on the ADRC controller, which can treat the internal and external uncertainties of the system as a whole. The other is the voltage control loop with the fractional-order PID controller for more flexibility. Simulation results demonstrate that the proposed control method has a stronger robustness and higher compensating precision comparing with the double-loop PID control method.


Author(s):  
Alexander Smirnov ◽  
Alexander H. Pesch ◽  
Olli Pyrhönen ◽  
Jerzy T. Sawicki

A method is presented for tool tracking in active magnetic bearing (AMB) spindle applications. The method uses control of the AMB air gap to achieve the desired tool position. The reference tracking problem is transformed from the tool coordinates into the AMB control axes by bearing deflection optimization. Therefore, tool tracking can be achieved by an off-the-shelf AMB controller. The method is demonstrated on a high-speed AMB boring spindle with a proportional integral derivative (PID) control. The hypothetical part geometries are traced in the range of 30 μm. Static external loading is applied to the tool to confirm disturbance rejection. Finally, a numerical simulation is performed to verify the ability to control the tool during high-speed machining.


Sign in / Sign up

Export Citation Format

Share Document