scholarly journals Supraspinatus Tendons Have Different Mechanical Properties Across Sex

2018 ◽  
Vol 141 (1) ◽  
Author(s):  
K. A. Bonilla ◽  
A. M. Pardes ◽  
B. R. Freedman ◽  
L. J. Soslowsky

Sex differences in the mechanical properties of different musculoskeletal tissues and their impact on tendon function and disease are becoming increasingly recognized. Tendon mechanical properties are influenced by the presence or absence of sex hormones and these effects appear to be tendon- or ligament-specific. The objective of this study was to determine how sex and hormone differences in rats affect supraspinatus tendon and muscle properties. We hypothesized that male supraspinatus tendons would have increased cross-sectional area but no differences in tendon material properties or muscle composition when compared to supraspinatus tendons from female or ovariectomized (OVX) female rats. Uninjured supraspinatus tendons and muscles from male, female, and OVX female rats were collected and mechanical and histological properties were determined. Our analysis demonstrated decreased dynamic modulus and increased hysteresis and cross-sectional area in male tendons. We found that male tendons exhibited decreased dynamic modulus (during low strain frequency sweep and high strain fatigue loading), increased hysteresis, and increased cross-sectional area compared to female and OVX female tendons. Despite robust mechanical differences, tendon cell density and shape, and muscle composition remained unchanged between groups. Interestingly, these differences were unique compared to previously reported sex differences in rat Achilles tendons, which further supports the concept that the effect of sex on tendon varies anatomically. These differences may partially provide a mechanistic explanation for the increased rate of acute supraspinatus tendon ruptures seen in young males.

2010 ◽  
Vol 638-642 ◽  
pp. 675-680 ◽  
Author(s):  
Martina Thomann ◽  
Nina von der Höh ◽  
Dirk Bormann ◽  
Dina Rittershaus ◽  
C. Krause ◽  
...  

Current research focuses on magnesium based alloys in the course of searching a resorbable osteosynthetic material which provides sufficient mechanical properties besides a good biocompatibility. Previous studies reported on a favorable biocompatibility of the alloys LAE442 and MgCa0.8. The present study compared the degradation process of cylindrical LAE442 and MgCa0.8 implants after 12 months implantation duration. Therefore, 10 extruded implants (2.5 x 25 mm, cross sectional area 4.9 mm²) of both alloys were implanted into the medullary cavity of both tibiae of rabbits for 12 months. After euthanization, the right bone-implant-compound was scanned in a µ-computed tomograph (µCT80, ScancoMedical) and nine uniformly distributed cross-sections of each implant were used to determine the residual implants´ cross sectional area (Software AxioVisionRelease 4.5, Zeiss). Left implants were taken out of the bone carefully. After weighing, a three-point bending test was carried out. LAE442 implants degraded obviously slower and more homogeneously than MgCa0.8. The mean residual cross sectional area of LAE442 implants was 4.7 ± 0.07 mm². MgCa0.8 showed an area of only 2.18 ± 1.03 mm². In contrast, the loss in volume of LAE442 pins was more obvious. They lost 64 % of their initial weight. The volume of MgCa0.8 reduced clearly to 54.4 % which corresponds to the cross sectional area results. Three point bending tests revealed that LAE442 showed a loss in strength of 71.2 % while MgCa0.8 lost 85.6 % of its initial strength. All results indicated that LAE442 implants degraded slowly, probably due to the formation of a very obvious degradation layer. Degradation of MgCa0.8 implants was far advanced.


2008 ◽  
Vol 105 (3) ◽  
pp. 805-810 ◽  
Author(s):  
C. Couppé ◽  
M. Kongsgaard ◽  
P. Aagaard ◽  
P. Hansen ◽  
J. Bojsen-Moller ◽  
...  

The purpose of this study was to examine patellar tendon (PT) size and mechanical properties in subjects with a side-to-side strength difference of ≥15% due to sport-induced loading. Seven elite fencers and badminton players were included. Cross-sectional area (CSA) of the PT obtained from MRI and ultrasonography-based measurement of tibial and patellar movement together with PT force during isometric contractions were used to estimate mechanical properties of the PT bilaterally. We found that distal tendon and PT, but not mid-tendon, CSA were greater on the lead extremity compared with the nonlead extremity (distal: 139 ± 11 vs. 116 ± 7 mm2; mid-tendon: 85 ± 5 vs. 77 ± 3 mm2; proximal: 106 ± 7 vs. 83 ± 4 mm2; P < 0.05). Distal tendon CSA was greater than proximal and mid-tendon CSA on both the lead and nonlead extremity ( P < 0.05). For a given common force, stress was lower on the lead extremity (52.9 ± 4.8 MPa) compared with the nonlead extremity (66.0 ± 8.0 MPa; P < 0.05). PT stiffness was also higher in the lead extremity (4,766 ± 716 N/mm) compared with the nonlead extremity (3,494 ± 446 N/mm) ( P < 0.05), whereas the modulus did not differ (lead 2.27 ± 0.27 GPa vs. nonlead 2.16 ± 0.28 GPa) at a common force. These data show that a habitual loading is associated with a significant increase in PT size and mechanical properties.


Author(s):  
Xini Zhang ◽  
Liqin Deng ◽  
Songlin Xiao ◽  
Lu Li ◽  
Weijie Fu

Background: Patients with Achilles tendon (AT) injuries are often engaged in sedentary work because of decreasing tendon vascularisation. Furthermore, men are more likely to be exposed to AT tendinosis or ruptures. These conditions are related to the morphological and mechanical properties of AT, but the mechanism remains unclear. This study aimed to investigate the effects of sex on the morphological and mechanical properties of the AT in inactive individuals. Methods: In total, 30 inactive healthy participants (15 male participants and 15 female participants) were recruited. The AT morphological properties (cross-sectional area, thickness, and length) were captured by using an ultrasound device. The AT force–elongation characteristics were determined during isometric plantarflexion with the ultrasonic videos. The AT stiffness was determined at 50%–100% maximum voluntary contraction force. The AT strain, stress, and hysteresis were calculated. Results: Male participants had 15% longer AT length, 31% larger AT cross-sectional area and 21% thicker AT than female participants (p < 0.05). The plantarflexion torque, peak AT force, peak AT stress, and AT stiffness were significantly greater in male participants than in female participants (p < 0.05). However, no significant sex-specific differences were observed in peak AT strain and hysteresis (p > 0.05). Conclusions: In physically inactive adults, the morphological properties of AT were superior in men but were exposed to higher stress conditions. Moreover, no significant sex-specific differences were observed in peak AT strain and hysteresis, indicating that the AT of males did not store and return elastic energy more efficiently than that of females. Thus, the mechanical properties of the AT should be maintained and/or improved through physical exercise.


2021 ◽  
Author(s):  
Hui Cao ◽  
Wenke Chen ◽  
Zhiyuan Rui ◽  
Changfeng Yan

Abstract Metal nanomaterials exhibit excellent mechanical properties compared with corresponding bulk materials and have potential applications in various areas. Despite a number of studies of the size effect on Cu nanowires mechanical properties with square cross-sectional, investigations of them in rectangular cross-sectional with various sizes at constant volume are rare, and lack of multifactor coupling effect on mechanical properties and quantitative investigation. In this work, the dependence of mechanical properties and deformation mechanisms of Cu nanowires/nanoplates under tension on cross-sessional area, aspect ratio of cross-sectional coupled with orientation were investigated using molecular dynamics simulations and the semi-empirical expressions related to mechanical properties were proposed. The simulation results show that the Young’s modulus and the yield stress sharply increase with the aspect ratio except for the <110>{110}{001} Cu nanowires/nanoplates at the same cross-sectional area. And the Young’s modulus increases while the yield stress decreases with the cross-sectional area of Cu nanowires. However, both of them increase with the cross-sectional area of Cu nanoplates. Besides, the Young’s modulus increases with the cross-sectional area at all the orientations. The yield stress shows a mildly downward trend except for the <111> Cu nanowires with increased cross-sectional area. For the Cu nanowires with a small cross-sectional area, the surface force increases with the aspect ratio. In contrast, it decreases with the aspect ratio increase at a large cross-sectional area. At the cross-sectional area of 13.068 nm2, the surface force decreases with the aspect ratio of the <110> Cu nanowires while it increases at other orientations. The surface force is a linearly decreasing function of the cross-sectional area at different orientations. Quantitative studies show that Young’s modulus and yield stress to the aspect ratio of the Cu nanowires satisfy exponent relationship. In addition, the main deformation mechanism of Cu nanowires is the nucleation and propagation of partial dislocations while it is the twinning-dominated reorientation for Cu nanoplates.


2010 ◽  
Vol 51 (3) ◽  
pp. 302-308 ◽  
Author(s):  
Yi-Chih Hsu ◽  
Ru-Yu Pan ◽  
Yen-Yu I. Shih ◽  
Meei-Shyuan Lee ◽  
Guo-Shu Huang

Background: Redundancy of the capsule has been considered to be the main pathologic condition responsible for atraumatic posteroinferior multidirectional shoulder instability; however, there is a paucity of measurements providing quantitative diagnosis. Purpose: To determine the significance of superior-capsular elongation and its relevance to atraumatic posteroinferior multidirectional shoulder instability at magnetic resonance (MR) arthrography. Material and Methods: MR arthrography was performed in 21 patients with atraumatic posteroinferior multidirectional shoulder instability and 21 patients without shoulder instability. One observer made the measurements in duplicate and was blinded to the two groups. The superior-capsular measurements (linear distance and cross-sectional area) under the supraspinatus tendon, and the rotator interval were determined on MR arthrography and evaluated for each of the two groups. Results: For the superior-capsular measurements, the linear distance under the supraspinatus tendon was significantly longer in patients with atraumatic posteroinferior multidirectional shoulder instability than in control subjects ( P<0.001). The cross-sectional area under the supraspinatus tendon, and the rotator interval were significantly increased in patients with atraumatic posteroinferior multidirectional shoulder instability compared to control subjects ( P<0.001 and P=0.01, respectively). Linear distance greater than 1.6 mm under the supraspinatus tendon had a specificity of 95% and a sensitivity of 90% for diagnosing atraumatic posteroinferior multidirectional shoulder instability. Cross-sectional area under the supraspinatus tendon greater than 0.3 cm2, or an area under the rotator interval greater than 1.4 cm2 had a specificity of more than 80% and a sensitivity of 90%. Conclusion: The superior-capsular elongation as well as its diagnostic criteria of measurements by MR arthrography revealed in the present study could serve as references for diagnosing atraumatic posteroinferior shoulder instability and offer insight into the spectrum of imaging findings corresponding to the pathologies encountered at clinical presentation.


2019 ◽  
Vol 4 (4) ◽  
pp. 2473011419S0045
Author(s):  
Jennifer A. Zellers ◽  
Jeremy Eekhoff ◽  
Remy Walk ◽  
Simon Y. Tang ◽  
Mary K. Hastings ◽  
...  

Category: Diabetes Introduction/Purpose: Advanced glycation endproducts (AGEs) accumulate in tendon tissue in individuals with diabetes mellitus (DM). Although AGEs have been shown to impact tendon function by decreasing collagen sliding, this relationship has not been explored in humans with diabetes. Despite the prevalence of foot deformity in this population and implications of posterior tibialis dysfunction, the mechanical behavior of the posterior tibialis tendon has only been reported in a small (n=5), cadaveric study that did not report DM status. Therefore, the purpose of this study is to determine the effects of DM-associated AGEs accumulation on the mechanical properties of the posterior tibialis tendon. Methods: Posterior tibialis tendons were collected from individuals with and without DM undergoing lower extremity amputation. A 1-2 mm tendon transection was used for AGEs quantification. AGEs were quantified via fluorescence following papain digestion and hydrolyzation as described previously. Fluorescence was compared to a quinine standard to calculate AGEs content, which was normalized to sample wet weight. Tensile mechanical testing was completed with the remaining specimen (˜25 mm long). Tendon cross-sectional area was measured with a non-contact laser scanning device. Specimens were preloaded to 10 N and preconditioned for 10 cycles at 6% strain, subjected to stress-relaxation at 6% strain for 10 minutes, and loaded with a triangular waveform to a maximum of 10% strain at a rate of 1% strain per second. Individual values and group descriptive statistics are reported for AGEs content and mechanical testing. Relationships between AGEs content and various mechanical testing parameters were evaluated using Spearman correlation. Results: Six individuals (5 with DM, 4 male, mean(SD) age: 56(5)years) were included. AGEs content was increased in DM tendon (DM: 20.5(5.1), non-DM: 9.5 ng quinine/mg wet weight). Compared to non-DM tendon, DM tendons had larger cross-sectional area (DM: 44.3(4.9), non-DM: 11mm2). From stress relaxation, DM tendons had smaller peak (DM: 0.41(0.25), non-DM: 1.16 MPa) and equilibrium stress (DM: 0.23(0.13), non-DM: 0.83 MPa), and larger percent relaxation (DM: 46(6)%, non-DM: 29%)(Figure 1-A). DM tendons had decreased maximum stress at 10% strain (DM: 0.63(0.45), non-DM: 1.75 MPa), increased linear stiffness (DM: 35.2(27.6), non-DM: 19.2N/mm), and decreased linear modulus (DM: 8.5(7.0), non-DM: 20.1 MPa)(Figure 1-B, C) compared to non- DM tendon. Hysteresis (i.e., energy loss upon unloading) was higher in DM tendons (DM: 0.35(0.05), non-DM: 0.22), and positively correlated to AGEs (rho=0.943, p=0.005, Figure 1-D). Conclusion: Posterior tibialis tendons with DM exhibited increased AGEs content and altered mechanical properties. DM tendons were less stiff when accounting for cross-sectional area but had 2-4x the cross-sectional area of non-DM tendon, with inconsistent patterns in total tendon stiffness potentially attributable to several factors. DM tendons showed impaired energy storage and return, which was most strongly associated with AGEs. Non-DM samples were limited and the linear modulus was smaller than previously reported, however, all but one DM tendon had a modulus less than 50% of the non-DM sample. Future work will explore the mechanisms of AGEs-associated DM tendon impairments.


2020 ◽  
Vol 32 (3) ◽  
pp. 157-164
Author(s):  
Trent J. Herda ◽  
Philip M. Gallagher ◽  
Jonathan D. Miller ◽  
Matthew P. Bubak ◽  
Mandy E. Parra

Background: Skeletal muscle is overlooked in the realm of insulin resistance in children who are overweight and obese despite the fact that it accounts for the most glucose disposal. Objectives: Therefore, this study examined fasted glucose levels and muscle cross-sectional area and echo intensity (EI) via ultrasound images of the first dorsal interosseous, vastus lateralis, and rectus femoris in children who are normal weight and overweight and obese aged 8–10 years. Methods: In total, 13 males (age = 9.0 [0.7] y) and 7 females (age = 9.0 [0.8] y) volunteered for this study. Independent samples t tests and effect sizes (ESs) were used to examine potential differences in skeletal muscle composition and glucose concentrations. Results: There were no significant differences between groups for glucose concentration (P = .07, ES = 0.86); however, the children who were overweight and obese had significantly greater EI (P < .01, ES = 0.98–1.63) for the first dorsal interosseous, vastus lateralis, and rectus femoris and lower cross-sectional area when normalized to EI when collapsed across muscles (P < .04, ES = 0.92). Glucose concentrations correlated with EI and cross-sectional area/EI for the vastus lateralis (r = .514 to −.593) and rectus femoris (r = .551 to −.513), but not the first dorsal interosseous. Discussion: There is evidence that adiposity-related pathways leading to insulin resistance and skeletal muscle degradation are active in young children who are overweight and obese.


1997 ◽  
Vol 83 (6) ◽  
pp. 1998-2004 ◽  
Author(s):  
J. A. Kent-Braun ◽  
A. V. Ng ◽  
M. Castro ◽  
M. W. Weiner ◽  
D. Gelinas ◽  
...  

Kent-Braun, J. A., A. V. Ng, M. Castro, M. W. Weiner, D. Gelinas, G. A. Dudley, and R. G. Miller. Strength, skeletal muscle composition and enzyme activity in multiple sclerosis. J. Appl. Physiol. 83(6): 1998–2004, 1997.—This study examined functional, biochemical, and morphological characteristics of skeletal muscle in nine multiple sclerosis (MS) patients and eight healthy controls in an effort to ascertain whether intramuscular adaptations could account for excessive fatigue in this disease. Analyses of biopsies of the tibialis anterior muscle showed that there were fewer type I fibers (66 ± 6 vs. 76 ± 6%), and that fibers of all types were smaller (average ↓26%) and had lower succinic dehydrogenase (SDH; average ↓40%) and SDH/α-glycerol-phosphate dehydrogenase (GPDH) but not GPDH activities in MS vs. control subjects, suggesting that muscle in this disease is smaller and relies more on anaerobic than aerobic-oxidative energy supply than does muscle of healthy individuals. Maximal voluntary isometric force for dorsiflexion was associated with both average fiber cross-sectional area ( r = 0.71, P = 0.005) and muscle fat-free cross-sectional area by magnetic resonance imaging ( r = 0.80, P < 0.001). Physical activity, assessed by accelerometer, was associated with average fiber SDH/GPDH ( r = 0.78, P = 0.008). There was a tendency for symptomatic fatigue to be inversely associated with average fiber SDH activity ( r = −0.57, P = 0.068). The results of this study suggest that the inherent characteristics of skeletal muscle fibers per se and of skeletal muscle as a whole are altered in the direction of disuse in MS. They also suggest that changes in skeletal muscle in MS may significantly affect function.


2020 ◽  
Vol 6 (12) ◽  
pp. 2375-2396
Author(s):  
Cecielle N. Dacuan ◽  
Virgilio Abellana ◽  
Hana Astrid Canseco

Corrosion is one of the significant deteriorations of reinforced concrete structures. It accelerated the performance loss of the structures, leading to a cross-sectional reduction of steel, which affects its mechanical properties, particularly its tensile capacity and ductility. The purpose of this study is to assess the serviceability and safety of corroded-damaged structures, particularly those exposed to aggressive marine environments. A total of 54 pcs of 150 mm-diameter and 300mm-height of cylindrical specimen were cast. Small-scaled specimens were accelerated to corrosion using impressed current techniques with a constant current density of 200 µA/cm2. Samples were immersed in a simulated environment with a 5% solution of sodium bicarbonate during corrosion acceleration. Corrosion alters the surface configuration of the steel bar. Pitting corrosions due to chloride aggression causes the residual cross-sectional area of corroded rebars to no longer round and varies considerably along its circumference and length. The reduction of the steel cross-sectional area has a significant impact on the degradation of the strength and durability of reinforcing structures. The residual capacity of the corroded reinforcement decreases with the reduction of the cross-sectional area of the steel reinforcement. The rate of corrosion affects the extent of the remaining service life of a corroded reinforced concrete structure. Doi: 10.28991/cej-2020-03091624 Full Text: PDF


Sign in / Sign up

Export Citation Format

Share Document