Comprehensive Study on the Effect of CuO Nano Fluids Prepared Using One-Step Chemical Synthesis Method on the Behavior of Waste Cooking Oil Biodiesel in Compression Ignition Engine

Author(s):  
Ramanathan Velmurugan ◽  
Jaikumar Mayakrishnan ◽  
S. Induja ◽  
Selvakumar Raja ◽  
Sasikumar Nandagopal ◽  
...  

Vegetable oil is considered as one among the promising alternatives for diesel fuel as it holds properties very close to diesel fuel. However, straight usage of vegetable oil in compression ignition (CI) engine resulted in inferior performance and emission behavior. This can be improved by modifying the straight vegetable oil into its esters, emulsion, and using them as a fuel in CI engine showcased an improved engine behavior. Waste cooking oil (WCO) is one such kind of vegetable oil gained a lot of attraction globally as it is generated in a large quantity locally. The present investigation aims at analyzing various parameters of single cylinder four stroke CI engine fueled with waste cooking oil biodiesel (WCOB), waste cooking oil biodiesel water emulsion (WCOBE) while the engine is operated with a constant speed of 1500 rpm. Furthermore, an attempt is made to study the impact of nanofluids in the behavior of the engine fueled with WCOB blended with nanofluids (WCOBN50). This work also explored a novel method of producing nanofluids using one-step chemical synthesis method. Copper oxide (CuO) nanofluids were prepared by the above mentioned method and blended with waste cooking oil biodiesel (WCOBN50) using ethylene glycol as a suitable emulsifier. Results revealed that brake thermal efficiency (BTE) and brake specific fuel consumption (BSFC) of WCOBN50 are significantly improved when compared to WCOB and WCOBE. Furthermore, a higher reduction in oxides of nitrogen (NOx), carbon monoxide (CO), hydrocarbon (HC), and smoke emissions were observed with WCOBN50 on comparison with all other tested fuels at different power outputs. It is also identified that one-step chemical synthesis method is a promising technique for preparing nanofluids with a high range of stability.

2021 ◽  
Vol 2 (1) ◽  
pp. 25-31
Author(s):  
Lochan Kendra Devkota ◽  
Surya Prasad Adhikari

In this study, different performance parameters of a Compression Ignition (CI) engine fueled with waste cooking oil biodiesel blends with diesel in different percentage volumes of 5 % biodiesel and 95 % diesel (W5), 10 % biodiesel and 90 % diesel (W10), 15 % biodiesel and 85 % diesel (W15) and 20 % biodiesel and 80 % diesel (W20) were tested experimentally. First, biodiesel was produced from waste cooking oil by transesterification process. The physical-chemical properties of biodiesel and W20 were tested. The tested properties of W20 were found to American Society for Testing and Materials (ASTM) standards near to diesel fuel. Subsequently, test of diesel and biodiesel blended fuels were carried out using 15:1 compression ratio on Kirloskar Single Cylinder Compression Ignition Engine at 1500 rpm on varying loads. The engine performance parameters for biodiesel blends such as Indicated Power (IP), Brake Power (BP), Brake Mean Effective Pressure (BMEP), Brake Thermal Efficiency (BTE), Specific Fuel Consumption (SFC) and Mechanical Efficiency (ME) against load in comparison to diesel fuel were obtained and verified those with diesel fuel. IP for diesel, W5, W10, W15 and W20 at load of 12 kg are 4.3 kW, 4.8 kW, 4.7 kW, 4.75 kW and 4.2 kW respectively. ME of W20 at 12 kg load is less by 4.1 % than diesel. The difference in SFC of diesel and W20 at 12 kg load was 0.27 kg/kWh. The experimental outcomes confirm that the IP and SFC of blended biodiesel were slightly superior. Correspondingly, BP and BMEP were also found comparable to diesel fuel.


2014 ◽  
Vol 660 ◽  
pp. 386-390 ◽  
Author(s):  
Norazwan Azman ◽  
Mirnah Suardi ◽  
Amir Khalid

The use of fossil fuels as energy sources has grown to significantly be likely to have a major environmental impact. Reduction of world oil reserves and increasing environmental concerns have prompted alternative is found and renewable source of energy called biodiesel. Biodiesel fuel from vegetable oil is considered as the best candidates for diesel fuel replacement in diesel engines because of its closer. Fuel prices are going up day by day in the world. Thus, the means and methods have been trying for years to get fuel alternative outcomes. This study investigated the effects of different storage periods used in quality biodiesel blends (B5, B10, B15) of waste cooking oil and diesel fuel under low temperature and the temperature of the environment. Biodiesel samples were stored in glass containers under indoor conditions, and outdoor conditions for 10 weeks in total. These samples were monitored on a weekly basis through the test properties. The experimental density, viscosity, acid value, water content and flash point discussed in detail. Biodiesel storage at low temperatures is suitable and more advantageous because the impact on the physical properties is minimal and beneficial to slow down the degradation of biodiesel and storage.


Author(s):  
Adhirath Mandal ◽  
◽  
HaengMuk Cho ◽  
Bhupendra Singh Chauhan ◽  
◽  
...  

The major contributor of pollution in the environment has been because of the transportation sector. Compression ignition engine has been a popular engine in the transportation sector. Compression ignition engines have been very popular in the power plants and marine engine because of its high compression ratio. Compressors and reciprocating engine(cylinder-piston) are the mechanical assembly in an IC engine. Change in air fuel mixture in the cylinder improves the combustion and emission. Rising concern for the environmental emission, strict rules have been implemented because of which automobile manufactures have to modify the engine to suit better the emission standards. Depleting fossil fuels and rising emission standards, biodiesel blend has gained interest as an alternate fuel, for being used in CI engine. Biodiesel could be produced from waste and non-edible oils, shows similar properties to conventional diesel fuel. Waste cooking oil as biodiesel have gained interest in the researchers. Employing waste cooking oil biodiesel in a CI engine, it was important to analyses the effect on cylinder and piston. This paper analyses and compares the thermal effect of the waste cooking oil biodiesel with conventional diesel on the piston of a CI engine.


2018 ◽  
Vol 22 (1) ◽  
pp. 179-205 ◽  
Author(s):  
Mert Gulum ◽  
Funda Kutlu Onay ◽  
Atilla Bilgin

Abstract Nowadays, biodiesel and vegetable oils have received increasing attention as renewable clean alternative fuels to fossil diesel fuel because of decreasing petroleum reserves and increasing environmental concerns. However, the straight use of biodiesel and vegetable oils in pure form results in several operational and durability problems in diesel engines because of their higher viscosity than fossil diesel fuel. One of the most used methods for solving the high viscosity problem is to blend them with fossil diesel fuel or alcohol. The reliable viscosity and density data of various biodiesel-diesel-alcohol ternary blends or biodiesel-diesel binary blends are plentifully available in existing literature, however, there is still the scarcity of dependable measurement values on different biodiesel-diesel-vegetable oil ternary blends at various temperatures. Therefore, in this study, waste cooking oil biodiesel (ethyl ester) was produced, and it was blended with fossil diesel fuel and waste cooking oil at different volume ratios to prepare ternary blends. Viscosities and densities of the ternary blends were determined at different temperatures according to DIN 53015 and ISO 4787 standards, respectively. The variation in viscosity with respect to temperature and oil fraction and the change of density vs. temperature were evaluated, rational and exponential models were proposed for these variations, and these models were tested against the density and viscosity data measured by the authors, Nogueira et al. and Baroutian et al. by comparing them to Gupta et al. model, linear model, Cragoe model and ANN (artificial neural networks) previously recommended in existing literature.


Author(s):  
Dinesh Ramchandani ◽  
Yogendra Rathore ◽  
R.K. Pandey

In this paper raw oil (jatropha, soybean and waste cooking fuel) is taken as potential alternative fuel for C.I. engines. The best distinction between these 3 kinds of oils and diesel fuel is viciousness. Every vegetable oil is blended with diesel in variable proportion (20% - 50%). Two sets of experiments are conducted for every fuel blend. First experiment is focussed on a performance check for pure diesel fuel. Second experiment is focussed on a performance check using many blends for each of Jatropha-diesel, soybean-diesel and waste cooking oil-diesel at fixed compression ratio of 18. The results of performance characteristics such as brake specific fuel consumption and brake thermal efficiency for every vegetable oil-diesel blends are compared with that using diesel fuel alone.


2014 ◽  
Vol 3 (10) ◽  
pp. 3419
Author(s):  
Mohan Reddy Nalabolu* ◽  
Varaprasad Bobbarala ◽  
Mahesh Kandula

At the present moment worldwide waning fossil fuel resources as well as the tendency for developing new renewable biofuels have shifted the interest of the society towards finding novel alternative fuel sources. Biofuels have been put forward as one of a range of alternatives with lower emissions and a higher degree of fuel security and gives potential opportunities for rural and regional communities. Biodiesel has a great potential as an alternative diesel fuel. In this work, biodiesel was prepared from waste cooking oil it was converted into biodiesel through single step transesterification. Methanol with Potassium hydroxide as a catalyst was used for the transesterification process. The biodiesel was characterized by its fuel properties including acid value, cloud and pour points, water content, sediments, oxidation stability, carbon residue, flash point, kinematic viscosity, density according to IS: 15607-05 standards. The viscosity of the waste cooking oil biodiesel was found to be 4.05 mm2/sec at 400C. Flash point was found to be 1280C, water and sediment was 236mg/kg, 0 % respectively, carbon residue was 0.017%, total acid value was 0.2 mgKOH/g, cloud point was 40C and pour point was 120C. The results showed that one step transesterification was better and resulted in higher yield and better fuel properties. The research demonstrated that biodiesel obtained under optimum conditions from waste cooking oil was of good quality and could be used as a diesel fuel.


Sign in / Sign up

Export Citation Format

Share Document