A Dynamic Escape Problem of Molecular Motors

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Dean Culver ◽  
Bryan Glaz ◽  
Samuel Stanton

Abstract Animal skeletal muscle exhibits very interesting behavior at near-stall forces (when the muscle is loaded so strongly that it can barely contract). Near this physical limit, the myosin II proteins may be unable to reach advantageous actin binding sites through simple attractive forces. It has been shown that the advantageous utilization of thermal agitation is a likely source for an increased force-production capacity and reach in myosin-V (a processing motor protein), and here we explore the dynamics of a molecular motor without hand-over-hand motion including Brownian motion to show how local elastic energy well boundaries may be overcome. We revisit a spatially two-dimensional mechanical model to illustrate how thermal agitation can be harvested for useful mechanical work in molecular machinery inspired by this biomechanical phenomenon without rate functions or empirically inspired spatial potential functions. Additionally, the model accommodates variable lattice spacing, and it paves the way for a full three-dimensional model of cross-bridge interactions where myosin II may be azimuthally misaligned with actin binding sites. With potential energy sources based entirely on realizable components, this model lends itself to the design of artificial, molecular-scale motors.

Author(s):  
Dean Culver ◽  
Bryan Glaz ◽  
Samuel Stanton

Animal skeletal muscle exhibits very interesting behavior at near-stall forces (when the muscle is loaded so strongly that it can barely contract). Near this physical limit, the actinmyosin cross bridges do more work than their energy releasing molecules, Adenosine TriPhosphate (ATP) suggest they can. It has been shown that the advantageous utilization of thermal agitation is a likely source for this increased capacity. Here, we propose a spatially two-dimensional mechanical model to illustrate how thermal agitation can be harvested for useful mechanical work in molecular machinery without rate functions or empirically-inspired spatial potential functions. Additionally, the model accommodates variable lattice spacing, and it paves the way for a full three dimensional model of cross-bridge interactions where myosin II may be azimuthally misaligned with actin binding sites. With potential energy sources based entirely on realizable components, this model lends itself to the design of artificial, molecular-scale motors.


Physiology ◽  
2002 ◽  
Vol 17 (5) ◽  
pp. 213-218 ◽  
Author(s):  
Caspar Rüegg ◽  
Claudia Veigel ◽  
Justin E. Molloy ◽  
Stephan Schmitz ◽  
John C. Sparrow ◽  
...  

Muscle myosin II is an ATP-driven, actin-based molecular motor. Recent developments in optical tweezers technology have made it possible to study movement and force production on the single-molecule level and to find out how different myosin isoforms may have adapted to their specific physiological roles.


1994 ◽  
Vol 126 (2) ◽  
pp. 433-443 ◽  
Author(s):  
A McGough ◽  
M Way ◽  
D DeRosier

The three-dimensional structure of actin filaments decorated with the actin-binding domain of chick smooth muscle alpha-actinin (alpha A1-2) has been determined to 21-A resolution. The shape and location of alpha A1-2 was determined by subtracting maps of F-actin from the reconstruction of decorated filaments. alpha A1-2 resembles a bell that measures approximately 38 A at its base and extends 42 A from its base to its tip. In decorated filaments, the base of alpha A1-2 is centered about the outer face of subdomain 2 of actin and contacts subdomain 1 of two neighboring monomers along the long-pitch (two-start) helical strands. Using the atomic model of F-actin (Lorenz, M., D. Popp, and K. C. Holmes. 1993. J. Mol. Biol. 234:826-836.), we have been able to test directly the likelihood that specific actin residues, which have been previously identified by others, interact with alpha A1-2. Our results indicate that residues 86-117 and 350-375 comprise distinct binding sites for alpha-actinin on adjacent actin monomers.


1984 ◽  
Vol 99 (3) ◽  
pp. 1024-1033 ◽  
Author(s):  
D P Kiehart ◽  
T D Pollard

Monoclonal and polyclonal antibodies that bind to myosin-II were tested for their ability to inhibit myosin ATPase activity, actomyosin ATPase activity, and contraction of cytoplasmic extracts. Numerous antibodies specifically inhibit the actin activated Mg++-ATPase activity of myosin-II in a dose-dependent fashion, but none blocked the ATPase activity of myosin alone. Control antibodies that do not bind to myosin-II and several specific antibodies that do bind have no effect on the actomyosin-II ATPase activity. In most cases, the saturation of a single antigenic site on the myosin-II heavy chain is sufficient for maximal inhibition of function. Numerous monoclonal antibodies also block the contraction of gelled extracts of Acanthamoeba cytoplasm. No polyclonal antibodies tested inhibited ATPase activity or gel contraction. As expected, most antibodies that block actin-activated ATPase activity also block gel contraction. Exceptions were three antibodies M2.2, -15, and -17, that appear to uncouple the ATPase activity from gel contraction: they block gel contraction without influencing ATPase activity. The mechanisms of inhibition of myosin function depends on the location of the antibody-binding sites. Those inhibitory antibodies that bind to the myosin-II heads presumably block actin binding or essential conformational changes in the myosin heads. A subset of the antibodies that bind to the proximal end of the myosin-II tail inhibit actomyosin-II ATPase activity and gel contraction. Although this part of the molecule is presumably some distance from the ATP and actin-binding sites, these antibody effects suggest that structural domains in this region are directly involved with or coupled to catalysis and energy transduction. A subset of the antibodies that bind to the tip of the myosin-II tail appear to inhibit ATPase activity and contraction through their inhibition of filament formation. They provide strong evidence for a substantial enhancement of the ATPase activity of myosin molecules in filamentous form and suggest that the myosin filaments may be required for cell motility.


Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1458 ◽  
Author(s):  
Gloria Asensio-Juárez ◽  
Clara Llorente-González ◽  
Miguel Vicente-Manzanares

The MYH9 gene encodes the heavy chain (MHCII) of non-muscle myosin II A (NMII-A). This is an actin-binding molecular motor essential for development that participates in many crucial cellular processes such as adhesion, cell migration, cytokinesis and polarization, maintenance of cell shape and signal transduction. Several types of mutations in the MYH9 gene cause an array of autosomal dominant disorders, globally known as MYH9-related diseases (MYH9-RD). These include May-Hegglin anomaly (MHA), Epstein syndrome (EPS), Fechtner syndrome (FTS) and Sebastian platelet syndrome (SPS). Although caused by different MYH9 mutations, all patients present macrothrombocytopenia, but may later display other pathologies, including loss of hearing, renal failure and presenile cataracts. The correlation between the molecular and cellular effects of the different mutations and clinical presentation are beginning to be established. In this review, we correlate the defects that MYH9 mutations cause at a molecular and cellular level (for example, deficient filament formation, altered ATPase activity or actin-binding) with the clinical presentation of the syndromes in human patients. We address why these syndromes are tissue restricted, and the existence of possible compensatory mechanisms, including residual activity of mutant NMII-A and/or the formation of heteropolymers or co-polymers with other NMII isoforms.


1998 ◽  
Vol 337 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Glenn E. MORRIS ◽  
Nguyen thi MAN ◽  
Nguyen thi Ngoc HUYEN ◽  
Alexander PEREBOEV ◽  
John KENDRICK-JONES ◽  
...  

Monoclonal antibody (mAb) binding sites in the N-terminal actin-binding domain of utrophin have been identified using phage-displayed peptide libraries, and the mAbs have been used to probe functional regions of utrophin involved in actin binding. mAbs were characterized for their ability to interact with the utrophin actin-binding domain and to affect actin binding to utrophin in sedimentation assays. One of these antibodies was able to inhibit utrophin–F-actin binding and was shown to recognize a predicted helical region at residues 13–22 of utrophin, close to a previously predicted actin-binding site. Two other mAbs which did not affect actin binding recognized predicted loops in the second calponin homology domain of the utrophin actin-binding domain. Using the known three-dimensional structure of the homologous actin-binding domain of fimbrin, these results have enabled us to determine the likely orientation of the utrophin actin-binding domain with respect to the actin filament.


2005 ◽  
Vol 127 (3) ◽  
pp. 391-399 ◽  
Author(s):  
Alexander A. Spector

Cochlear outer hair cells are crucial for active hearing. These cells have a unique form of motility, named electromotility, whose main features are the cell’s length changes, active force production, and nonlinear capacitance. The molecular motor, prestin, that drives outer hair cell electromotility has recently been identified. We reveal relationships between the active energy produced by the outer hair cell molecular motors, motor effectiveness, and the capacitive properties of the cell membrane. We quantitatively characterize these relationships by introducing three characteristics: effective capacitance, zero-strain capacitance, and zero-resultant capacitance. We show that zero-strain capacitance is smaller than zero-resultant capacitance, and that the effective capacitance is between the two. It was also found that the differences between the introduced capacitive characteristics can be expressed in terms of the active energy produced by the cell’s molecular motors. The effectiveness of the cell and its molecular motors is introduced as the ratio of the motors’ active energy to the energy of the externally applied electric field. It is shown that the effectiveness is proportional to the difference between zero-strain and zero-resultant capacitance. We analyze the cell and motor’s effectiveness within a broad range of cellular parameters and estimate it to be within a range of 12%–30%.


Author(s):  
Cordula Reuther ◽  
Sönke Steenhusen ◽  
Christoph Meinecke ◽  
pradheebha surendiran ◽  
Aseem Salhotra ◽  
...  

Abstract Molecular motor-driven filament systems have been extensively explored for biomedical and nanotechnological applications such as lab-on-chip molecular detection or network-based biocomputation. In these applications, filament transport conventionally occurs in two dimensions (2D), often guided along open, topographically and/or chemically structured channels which are coated by molecular motors. However, at crossing points of different channels the filament direction is less well determined and, though crucial to many applications, reliable guiding across the junction can often not be guaranteed. We here present a three-dimensional (3D) approach that eliminates the possibility for filaments to take wrong turns at junctions by spatially separating the channels crossing each other. Specifically, 3D junctions with tunnels and overpasses were manufactured on glass substrates by two-photon polymerization, a 3D fabrication technology where a tightly focused, femtosecond-pulsed laser is scanned in a layer-to-layer fashion across a photo-polymerizable inorganic-organic hybrid polymer (ORMOCER®) with µm resolution. Solidification of the polymer was confined to the focal volume, enabling the manufacturing of arbitrary 3D microstructures according to CAD data. Successful realization of the 3D junction design was verified by optical and electron microscopy. Most importantly, we demonstrated the reliable transport of filaments, namely microtubules propelled by kinesin-1 motors, across these 3D junctions without junction errors. Our results open up new possibilities for 3D functional elements in biomolecular transport systems, in particular their implementation in biocomputational networks.


2013 ◽  
Vol 31 (10) ◽  
pp. 1150-1159 ◽  
Author(s):  
Stanislav O. Fedechkin ◽  
Jacob Brockerman ◽  
Elizabeth J. Luna ◽  
Michail Yu. Lobanov ◽  
Oxana V. Galzitskaya ◽  
...  

2014 ◽  
Vol 70 (a1) ◽  
pp. C1056-C1056
Author(s):  
Paola Llinas ◽  
Tatiana Isabet ◽  
Lin Song ◽  
Allan Zhong ◽  
Serena Sirigu ◽  
...  

Directed force production is essential for life. Allostery is at the heart of the mechanism that cellular nanomotors use to walk, pull or anchor. Such molecular motors are essential for a cell to migrate, to divide and organise the intra-cellular traffic between its compartments. The actin-based motors, myosins, are critical for many of these movements, for muscle contraction, cytokinesis and sophisticated cellular functions such as hearing. Deficit in these motors can lead to a number of human genetic disorders. Force is produced by these motors by the conversion of chemical energy derived from ATP hydrolysis into mechanical energy via the interaction with their track, the actin filament. Biophysical approaches have provided insights into the chemo-mechanical coupling in the actomyosin system. They show how three allosteric sites communicate via relatively small conformational changes in the motor domain that are coupled and amplified by a lever-arm mechanism that produce a working stroke of several nanometers. While ATP binding and hydrolysis are essential for detachment of the motor from its track and its trapping in the pre-stroke conformation, step-wise rebinding to the track triggers controlled release of hydrolysis products upon the working stroke. A reverse motor, myosin VI has been particularly intriguing and informative regarding the force production mechanism. An unpublished structural state not only reveal how trapping of the hydrolysis products stabilize the primed pre-stroke conformation, it also provides insights for the rearrangements triggered by actin to promote Pi release. This new structural state has all the expected features of the Pi release state populated upon motor re-binding to its track. This allows visualization for the first time of the structural rearrangements triggered by actin binding that are coupled to force generation and product release at the beginning of the powerstroke.


Sign in / Sign up

Export Citation Format

Share Document