Effect of Morphology of Nano-Structured Surfaces on Anti-Icing Performance

Author(s):  
Siyan Yang ◽  
Tingting Hao ◽  
Mucan Liu ◽  
Xingtong Yu ◽  
Xuehu Ma

Abstract Droplets bouncing off cold surfaces before being frozen is one way to achieve anti-icing, in which process superhydrophobic surfaces have been proven to play an important role. By using template-assisted method, three types of copper nanowired superhydrophobic surfaces (NSHSs) with mainly two morphologies (aggregated and upright) are fabricated. CuO nanograssed superhydrophobic surface (SHS) and copper smooth hydrophobic surface (HS) are also fabricated as a comparison. Compared with smooth HS and nanograssed SHS, all NSHSs exhibit better performance in repelling impacting droplet. In detail, on three types of NSHSs with temperatures ranging from 20 °C to −20 °C, impacting droplets can totally rebound. Among the three types, nanowires aggregated most exhibit the best water-repellency performance. The different performances among the five surfaces are due to surface temperature and surface morphology parameters, including micro/nano-size and surface roughness.

Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 472 ◽  
Author(s):  
Doeun Kim ◽  
Arun Sasidharanpillai ◽  
Ki Hoon Yun ◽  
Younki Lee ◽  
Dong-Jin Yun ◽  
...  

Robust superhydrophobic surfaces are fabricated on different substrates by a scalable spray coating process. The developed superhydrophobic surface consists of thin layers of surface functionalized silica nanoparticle (SiO2) bound to the substrate by acrylate-polyurethane (PU) binder. The influence of the SiO2/PU ratio on the superhydrophobicity, and the robustness of the developed surface, is systematically analyzed. The optimized SiO2/PU ratio for prepared superhydrophobic surfaces is obtained between 0.9 and 1.2. The mechanism which yields superhydrophobicity to the surface is deduced for the first time with the help of scanning electron microscopy and profilometer. The effect of mechanical abrasion on the surface roughness and superhydrophobicity are analyzed by using profilometer and contact angle measurement, respectively. Finally, it is concluded that the binder plays a key role in controlling the surface roughness and superhydrophobicity through the capillary mechanism. Additionally, the reason for the reduction in performance is also discussed with respect to the morphology variation.


2019 ◽  
Vol 14 (1) ◽  
Author(s):  
Huan Yang ◽  
Kaichen Xu ◽  
Changwen Xu ◽  
Dianyuan Fan ◽  
Yu Cao ◽  
...  

Abstract Highly stretchable and robust superhydrophobic surfaces have attracted tremendous interest due to their broad application prospects. In this work, silicone elastomers were chosen to fabricate superhydrophobic surfaces with femtosecond laser texturing method, and high stretchability and tunable adhesion of the superhydrophobic surfaces were demonstrated successfully. To our best knowledge, it is the first time flexible superhydrophobic surfaces with a bearable strain up to 400% are fabricated by simple laser ablation. The test also shows that the strain brings no decline of water repellency but an enhancement to the superhydrophobic surfaces. In addition, a stretching-induced transition from “petal” state to “lotus” state of the laser-textured surface was also demonstrated by non-loss transportation of liquid droplets. Our results manifest that femtosecond laser ablating silicone elastomer could be a promising way for fabricating superhydrophobic surface with distinct merits of high stretchability, tunable adhesion, robustness, and non-fluorination, which is potentially useful for microfluidics, biomedicine, and liquid repellent skin.


2021 ◽  
Vol 16 (2) ◽  
pp. 208-212
Author(s):  
Zhong-Peng Liu ◽  
Si-Nan Song ◽  
Mu Zhang

Recently, superhydrophobic surface on various type of substrates have attracted much attentions in electronics field. In this work, the classic Stöber method was used to prepare spherical silica particles with different particle sizes by adding different amounts of electrolyte (potassium chloride), giving rise to size distribution ranging from 300 nm to 2.55 yitm. Herein we constructed a micro-nano lotus-like structure in a facile way, achieving a superhydrophobic surface with using any Fluorine related chemicals. In the sense, the silica particles modified with HMDS were sprayed to prepare hydrophobic surface with contact angle up to 152.96° by increasing the frequency of sprays.


Author(s):  
Yugang Zhao ◽  
Chun Yang

Despite that using surface-roughness-induced superhydrophobic surface as a solution for ice/snow accretion issues has achieved extensive progresses, its icephobicity breaks down in case of condensation frosting, while the high aspect ratio structure brings more concerns on its durability and sustainability. In this work we investigated condensate frosting on substrates fabricated with patterned micropillars having a small aspect ratio, and studied the freezing propagation with different pattern sizes. The results show that a coarse patterned substrate can effectively suppress the freeing propagation while a fine patterned one can drastically promote the freezing propagation. Frost coverage can also be reduced with proper pattern design. A theoretical model was developed to explain the mechanism of surface ice propagation, and agrees well in tendency with experiment measurements. The aim of this study is to provide some new insights on the influence of surface morphology on ice growth.


2009 ◽  
Vol 1158 ◽  
Author(s):  
Yonghao Xiu ◽  
Yan Liu ◽  
Dennis W. Hess ◽  
Chingping Wong

AbstractCreation of superhydrophobic self-cleaning surfaces is an important objective for a variety of applications. Indeed, numerous routes to generate superhydrophobic surfaces have been proposed. In this paper, a facile way of forming superhydrophobic surfaces is reported that uses Au assisted HF/H2O2 etching of silicon wafers. The Au layer was deposited onto a silicon wafer via e-beam evaporation. By controlling the evaporation and etching times, the surface roughness can be manipulated and superhydrophobic surfaces with reduced light reflection can be generated. Contact angles were measured with a CCD camera equipped goniometer; these values determined the water repellency. Light reflection on the as prepared black surfaces was measured to assess the efficiency for low cost solar cell applications. This approach offers a new way both to theoretically study the surface roughness effect and to investigate engineering applications of self-cleaning surfaces in solar cells, MEMS, anti-bacteria coating, and microfluidic devices.


2021 ◽  
Vol 13 (4) ◽  
pp. 168781402110118
Author(s):  
Zenan Chu ◽  
Tao Wang ◽  
Qiang He ◽  
Kai Zhao

To solve the problems of low processing efficiency and poor glass surface quality when using rare earth polishing powder to grind super-hard K9 glass. The potential, phase structure, surface morphology, and particle size distribution of the nano-rare earth polishing powder were characterized. Compare the evaluation indexes such as polishing efficiency, surface morphology, and contact angle after the polishing process is changed. The results of the comparative study show that the average surface roughness of the glass after heating ultrasonic polishing process is 0.9064 nm, the polishing rate reaches 0.748 μm/min, the average surface roughness of the glass without heating ultrasonic polishing process is 1.3175 nm, and the polishing rate reaches 0.586 μm/min, the ultrasonic assisted polishing process is superior to the conventional polishing process. The heating ultrasonic method provides experimental basis for precise and rapid processing.


Soft Matter ◽  
2021 ◽  
Author(s):  
Jianchen Zhu ◽  
Tian ren Zhang ◽  
Yajie Liu ◽  
Daoyi Lu ◽  
Peng Zhang ◽  
...  

A kind of low-molecular weight organic gelator (LMOG) bearing hydrazine linkage and end-capped by alkoxy-substituted phenyl, namely 1, 4-bis[(3, 4-bisoctyloxyphenyl)hydrozide]phenylene (BPH-8), was used to facilely fabricate superhydrophobic surfaces by drop-casting...


Soft Matter ◽  
2021 ◽  
Author(s):  
Yuxing Shan ◽  
shuai liang ◽  
Xiangkai Mao ◽  
Jie Lu ◽  
Lili Liu ◽  
...  

Abstract. Stretchable elastomers with superhydrophobic surfaces have potential applications in wearable electronics. However, various types of damage inevitably occur on these elastomers in actual application, resulting in deterioration of the...


2017 ◽  
Vol 8 (2) ◽  
pp. 179-187 ◽  
Author(s):  
Kankan Ji ◽  
Xingquan Zhang ◽  
Shubao Yang ◽  
Liping Shi ◽  
Shiyi Wang ◽  
...  

Purpose The purpose of this paper is to evaluate surface integrity of quenched steel 1045 ground drily by the brazed cubic boron nitride (CBN) grinding wheel and the black SiC wheel, respectively. Surface integrity, including surface roughness, sub-surface hardness, residual stresses and surface morphology, was investigated in detail, and the surface quality of samples ground by two grinding wheels was compared. Design/methodology/approach In the present work, surface integrity of quenched steel 1045 machined by the CBN grinding wheel and the SiC wheel was investigated systematically. All the specimens were machined with a single pass in the down-cutting mode of dry condition. Surface morphology of the ground specimen was observed by using OLYMPUS BX51M optical microscopy. Surface roughness of seven points was measured by using a surface roughness tester at a cut-off length of 1.8 mm and the measurement traces were perpendicular to the grinding direction. Sub-surface micro-hardness was measured by using HVS-1000 digital micro-hardness tester after the cross-section surface was polished. The residual stress was tested by using X-350A X-ray stress analyzer. Findings When the cut depth is increased from 0.01 to 0.07 mm, the steel surface machined by the CBN wheel remains clear grinding mark, lower roughness, higher micro-hardness and higher magnitude of compressive stress and fine microstructure, while the surface machined by the SiC grinding wheel becomes worse with increasing of cut depth. The value of micro-hardness decreases, and the surface roughness increases, and the surface compressive stress turns into tensile stress. Some micro-cracks and voids occur when the sample is processed by the SiC grinding wheel with cut depth 0.07 mm. Originality/value In this paper, the specimens of quenched steel 1045 were machined by the CBN grinding wheel and the SiC wheel with various cutting depths. The processing quality resulted from the CBN grinding wheel is better than that resulted from the SiC grinding wheel.


2012 ◽  
Vol 500 ◽  
pp. 308-313 ◽  
Author(s):  
Guo Qiang Guo ◽  
Zhi Qiang Liu ◽  
Xiao Hu Zheng ◽  
Ming Chen

This paper investigates the effects of MQL system on the grinding performance of Ti-6Al-4V using SiC abrasive, the evaluation of the performance consisted of analyzing the grinding force, surface roughness and surface morphology. The experiment result indicated that the favorable lubricating effect of MQL oil makes it has the lowest value of grinding force, specific energy and force raito. MQL has better surface finish than dry grinding and fluid grinding has the lowest value of surface roughness under different grinding depth. Surface damages such as: side flow, plastic deformation, redeposition are present in dry and fluid grinding. As grinding depth increased, the damages become much more severe. But in MQL condition, it gives better surface integrity than dry and fluid grinding.


Sign in / Sign up

Export Citation Format

Share Document