Challenges Associated With Replicating Rotor Blade Deposition in a Non-Rotating Annular Cascade

2020 ◽  
Vol 142 (9) ◽  
Author(s):  
Christopher P. Bowen ◽  
Ali Ameri ◽  
Jeffrey P. Bons

Abstract A computational analysis is performed to determine if particulate impact events on the external surfaces of gas turbine engine rotor blades can be faithfully replicated in an experimental rotor cascade. The general electric (GE) energy efficient engine (E3) first-stage turbine flow-field at cruise conditions is first solved using a steady-state explicit mixing plane (MP) approach. To model flow in the cascade, a single E3 rotor periodic domain is then constructed with an inlet section matching the relative flow incidence angle from the mixing plane calculation. The mass-averaged relative flow conditions at the inlet and outlet of the mixing plane rotor section are imposed on the cascade boundaries and a steady solution is found. Particles with diameters ranging from 1 to 25 µm are tracked through each domain and the OSU deposition model is implemented to dictate the sticking and rebounding action of particles impacting solid surfaces. It is discovered that both the locations and parameters of the impacts in the cascade vary significantly from the engine environment. For smaller particles, this is credited to a stronger upstream influence of the blade on the cascade flow-field. As size increases, differences in deposition are instead driven by the interaction of the full-stage vane with the particles. The lack of a vane in the cascade causes drastically different particle inlet vectors over the rotor than are seen in the engine setting. The radial differences of particle impact locations are explored, and the role that pressure plays is considered.

Author(s):  
Christopher P. Bowen ◽  
Ali Ameri ◽  
Jeffrey P. Bons

Abstract A computational analysis is performed to determine if particulate impact events on the external surfaces of gas turbine engine rotor blades can be faithfully replicated in an experimental rotor cascade. The General Electric (GE) Energy Efficient Engine (E3) first-stage turbine flow-field at cruise conditions is first solved using a steady state explicit mixing plane approach with non-reflecting treatment. To model flow in the cascade, a single E3 rotor periodic domain is then constructed with an inlet section matching the relative flow incidence angle from the mixing plane calculation. The mass-averaged relative flow conditions at the inlet and outlet of the mixing plane rotor section are imposed on the cascade boundaries and a steady solution is found. Particles with diameters ranging from 1 to 25 μm are tracked through each fluid domain using a Lagrangian approach, and the OSU Deposition Model is implemented to dictate the sticking and rebounding action when particles interact with solid surfaces. The impact locations on the blade are compared between the rotating (mixing plane) and stationary (cascade) cases. It is discovered that both the locations and parameters of the particle impacts in the cascade vary significantly from the engine environment. For smaller particles, this deviation is credited to a stronger upstream influence of the blade on the cascade flow-field. As particle size increases, this effect tapers off, and the differences in deposition are instead driven by the interaction of the full-stage vane with the particles. The lack of a vane in the cascade causes drastically different particle inlet vectors over the rotor than are seen in the engine setting. The radial differences of particle impact locations are explored, and the role that absolute pressure plays is considered.


2012 ◽  
Vol 34 (3) ◽  
pp. 169-184 ◽  
Author(s):  
Hoang Thi Bich Ngoc

Vertical axis wind turbine technology has been applied last years, very long after horizontal axis wind turbine technology. Aerodynamic problems of vertical axis wind machines are discussible. An important problem is the determination of the incidence law in the interaction between wind and rotor blades. The focus of the work is to establish equations of the incidence depending on the blade azimuth, and to solve them. From these results, aerodynamic torques and power can be calculated. The incidence angle is a parameter of velocity triangle, and both the factors depend not only on the blade azimuth but also on the ratio of rotational speed and horizontal speed. The built computational program allows theoretically selecting the relationship of geometric parameters of wind turbine in accordance with requirements on power, wind speed and installation conditions.


Author(s):  
A. Perdichizzi ◽  
V. Dossena

This paper describes the results of an experimental investigation of the three-dimensional flow downstream of a linear turbine cascade at off-design conditions. The tests have been carried out for five incidence angles from −60 to +35 degrees, and for three pitch-chord ratios: s/c = 0.58,0.73,0.87. Data include blade pressure distributions, oil flow visualizations, and pressure probe measurements. The secondary flow field has been obtained by traversing a miniature five hole probe in a plane located at 50% of an axial chord downstream of the trailing edge. The distributions of local energy loss coefficients, together with vorticity and secondary velocity plots show in detail how much the secondary flow field is modified both by incidence and cascade solidity variations. The level of secondary vorticity and the intensity of the crossflow at the endwall have been found to be strictly related to the blade loading occurring in the blade entrance region. Heavy changes occur in the spanwise distributions of the pitch averaged loss and of the deviation angle, when incidence or pitch-chord ratio is varied.


Author(s):  
Fabian F. Müller ◽  
Markus Schatz ◽  
Damian M. Vogt ◽  
Jens Aschenbruck

The influence of a cylindrical strut shortly downstream of the bladerow on the vibration behavior of the last stage rotor blades of a single stage LP model steam turbine was investigated in the present study. Steam turbine retrofits often result in an increase of turbine size, aiming for more power and higher efficiency. As the existing LP steam turbine exhaust hoods are generally not modified, the last stage rotor blades frequently move closer to installations within the exhaust hood. To capture the influence of such an installation on the flow field characteristics, extensive flow field measurements using pneumatic probes were conducted at the turbine outlet plane. In addition, time-resolved pressure measurements along the casing contour of the diffuser and on the surface of the cylinder were made, aiming for the identification of pressure fluctuations induced by the flow around the installation. Blade vibration behavior was measured at three different operating conditions by means of a tip timing system. Despite the considerable changes in the flow field and its frequency content, no significant impact on blade vibration amplitudes were observed for the investigated case and considered operating conditions. Nevertheless, time-resolved pressure measurements suggest that notable pressure oscillations induced by the vortex shedding can reach the upstream bladerow.


2003 ◽  
Vol 125 (3) ◽  
pp. 405-415
Author(s):  
Ammar A. Al-Nahwi ◽  
James D. Paduano ◽  
Samir A. Nayfeh

This paper presents a first principles-based model of the fluid-induced forces acting on the rotor of an axial compressor. These forces are primarily associated with the presence of a nonuniform flow field around the rotor, such as that produced by a rotor tip clearance asymmetry. Simple, analytical expressions for the forces as functions of basic flow field quantities are obtained. These expressions allow an intuitive understanding of the nature of the forces and—when combined with a rudimentary model of an axial compressor flow field (the Moore-Greitzer model)—enable computation of the forces as a function of compressor geometry, torque and pressure-rise characteristics, and operating point. The forces predicted by the model are also compared to recently published measurements and more complex analytical models, and are found to be in reasonable agreement. The model elucidates that the fluid-induced forces comprise three main contributions: fluid turning in the rotor blades, pressure distribution around the rotor, and unsteady momentum storage within the rotor. The model also confirms recent efforts in that the orientation of fluid-induced forces is locked to the flow nonuniformity, not to tip clearance asymmetry as is traditionally assumed. The turning and pressure force contributions are shown to be of comparable magnitudes—and therefore of equal importance—for operating points between the design point and the peak of the compressor characteristic. Within this operating range, both “forward” and “backward” rotor whirl tendencies are shown to be possible. This work extends recent efforts by developing a more complete, yet compact, description of fluid-induced forces in that it accounts for all relevant force contributions, both tangential and radial, that may influence the dynamics of the rotor. Hence it constitutes an essential element of a consistent treatment of rotordynamic stability under the action of fluid-induced forces, which is the subject of Part II of this paper.


2007 ◽  
Vol 2007 ◽  
pp. 1-14 ◽  
Author(s):  
Zhao Qingjun ◽  
Wang Huishe ◽  
Zhao Xiaolu ◽  
Xu Jianzhong

The results of recent studies have shown that combustor exit temperature distortion can cause excessive heat load of high-pressure turbine (HPT) rotor blades. The heating of HPT rotor blades can lead to thermal fatigue and degrade turbine performance. In order to explore the influence of hot streak temperature ratio on the temperature distributions of HPT airfoil surface, three-dimensional multiblade row unsteady Navier-Stokes simulations have been performed in a vaneless counter-rotating turbine (VCRT). The hot streak temperature ratios from 1.0 (without hot streak) to 2.4 were used in these numerical simulations, including 1.0, 1.2, 1.6, 2.0, and 2.4 temperature ratios. The hot streak is circular in shape with a diameter equal to 25%of the span. The center of the hot streak is located at 50%of span and 0%of pitch (the leading edge of the HPT stator vane). The predicted results show that the hot streak is relatively unaffected as it migrates through the HPT stator. The hot streak mixes with the vane wake and convects towards the pressure surface (PS) of the HPT rotor when it moves over the vane surface of the HPT stator. The heat load of the HPT rotor increases with the increase of the hot streak temperature ratio. The existence of the inlet temperature distortion induces a thin layer of cooler air in the HPT rotor, which separates the PS of the HPT rotor from the hotter fluid. The numerical results also indicating the migration characteristics of the hot streak in the HPT rotor are predominated by the combined effects of secondary flow and buoyancy. The combined effects that induce the high-temperature fluid migrate towards the hub on the HPT rotor. The effect of the secondary flow on the hotter fluid increases as the hot streak temperature ratio is increased. The influence of buoyancy is directly proportional to the hot streak temperature ratio. The predicted results show that the increase of the hot streak temperature ratio trends to increase the relative Mach number at the HPT rotor outlet, and decrease the relative flow angle from 25%to 75%span at the HPT rotor outlet. In the other region of the HPT outlet, the relative flow angle increases when the hot streak temperature ratio is increased. The predicted results also indicate that the isentropic efficiency of the VCRT decreases with the increase of the hot streak temperature ratio.


Author(s):  
Liang HUANG ◽  
Yan CAO ◽  
Chunlei TIAN ◽  
Ruochen ZHAO ◽  
Jiang DU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document