Development and Application of a Thin Flat Heat Pipe Design Optimization Tool for Small Satellite Systems

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Steven A. Isaacs ◽  
Caelan Lapointe ◽  
Peter E. Hamlington

Abstract With easier access to space and the growing integration of power-dense components, small-scale thermal management solutions are increasingly in demand for small satellite systems. Due to the strict mass and volume requirements commanded by such power-dense small spacecraft, heat pipes with thin and flat architectures provide nearly ideal solutions for the efficient transfer and dissipation of heat. Unlike traditional heat pipes, however, the performance of thin heat pipes is heavily dependent on details of the internal heat pipe structure, including the vapor core geometry and structural mechanical characteristics. In this study, the development and testing of a new computational modeling and optimization tool are presented for the design of thin flat heat pipes. The computational model is described in detail and includes parameters that define properties of the liquid wick, vapor core, and structural case. The model is coupled to a gradient-based optimization procedure that minimizes a multi-objective cost function for a range of operating conditions. The cost function is expressed as the weighted sum of the total temperature drop, the liquid/vapor pressure ratio, the total mass of the heat pipe, and the structural deflection of the heat pipe during operation. The combined computational modeling and optimization tool is then used to design a copper-methanol flat heat pipe for a small satellite mission, where the optimization is performed with respect to both cold and hot orbital conditions. Validation of the optimized heat pipe is performed using computational fluid dynamics (CFD) simulations of the initial and final designs.

Author(s):  
Kailyn Cage ◽  
Monifa Vaughn-Cooke ◽  
Mark Fuge ◽  
Briana Lucero ◽  
Dusan Spernjak ◽  
...  

Additive manufacturing (AM) processes allow for complex geometries to be developed in a cost- and time-efficient manner in small-scale productions. The unique functionality of AM offers an ideal collaboration between specific applications of human variability and thermal management. This research investigates the intersection of AM, human variability and thermal management in the development of a military helmet heat exchanger. A primary aim of this research was to establish the effectiveness of AM components in thermal applications based on material composition. Using additively manufactured heat pipe holders, the thermal properties of a passive evaporative cooler are tested for performance capability with various heat pipes over two environmental conditions. This study conducted a proof-of-concept design for a passive helmet heat exchanger, incorporating AM components as both the heat pipe holders and the cushioning material targeting internal head temperatures of ≤ 35°C. Copper heat pipes from 3 manufactures with three lengths were analytically simulated and experimentally tested for their effectiveness in the helmet design. A total of 12 heat pipes were tested with 2 heat pipes per holder in a lateral configuration inside a thermal environmental chamber. Two 25-hour tests in an environmental chamber were conducted evaluating temperature (25°C, 45°C) and relative humidity (25%, 50%) for the six types of heat pipes and compared against the analytical models of the helmet heat exchangers. Many of the heat pipes tested were good conduits for moving the heat from the head to the evaporative wicking material. All heat pipes had Coefficients of Performance under 3.5 when tested with the lateral system. Comparisons of the analytical and experimental models show the need for the design to incorporate a re-wetting reservoir. This work on a 2-dimensional system establishes the basis for design improvements and integration of the heat pipes and additively manufactured parts with a 3-dimensional helmet.


Author(s):  
Victor Adrian Chiriac

The transient thermal behavior of a complex testing system including multiple fans, a mixing enclosure, Cu inserts and a leaded package dissipating large amounts of power over short time durations is evaluated via numerical simulations. The system performance is optimized with heat sink/fan structure for device efficient operation under constant powering. The study provides meaningful understanding and prediction of a transient powering scenario at high powering levels, evaluating the impact of alternative cooling fan/heat pipe configurations on the thermal performance of the system. One design is chosen due to its effective thermal performance and assembly simplicity, with the package embedded in heat sink base with multiple (5) heat pipes. The peak temperature reached by the modified design with 4 cooling fans is ∼95°C, with the corresponding Rja thermal resistance ∼0.58°C/W. For the transient study (with embedded heat pipes and 4 fans), after one cycle, both peak temperature (at 45 s) and the end temperature (at 49 s) decrease as compared to the previous no heat pipe/single fan case (especially the end temperature reduces by ∼16%). The temperature drop between peak and end for each cycle is ∼80.2°C, while the average power per transient cycle is ∼31.27W. With this power, the design with 5 perpendicular heat pipes, 4 fans and insert reaches a steady state peak temperature of ∼98°C. Applying the superposition principle, the maximum transient temperature after a large number of operating cycles will not exceed ∼138.1°C, satisfying the thermal budget under the current operating conditions. The benefit of the study is related to the possibility to extract the maximum/minimum temperatures for a real test involving a large number of heating-cooling cycles, yet maintaining the initial and peak temperatures within a certain range for the optimal operation of the device. The flow and heat transfer fields are thoroughly investigated: using a combination of numerical and analytical study, the thermal performance of the device undergoing large number of periodic thermal cycles is predicted. Further comparison between measurement and simulation results reveals good agreement.


2015 ◽  
Vol 137 (5) ◽  
Author(s):  
Michael J. Stubblebine ◽  
Ivan Catton

Aluminum heat pipes have traditionally been incompatible with water and water-based fluids because they quickly react to generate noncondensable hydrogen gas (NCG). Two different inorganic aqueous solutions (IAS) are tested in a flat heat pipe (FHP). Grooved aluminum plates were used as the heat pipe wick and the tests were run with the heating section raised above the condenser. Compatibility between the working fluid and the aluminum heat pipe was established by running the device to dryout and observing thermal resistance results along the way. De-ionized (DI) water was also tested, as a baseline for comparison, to establish that it did indeed fail as expected. Operating performance of each mixture was obtained from zero heat input until dryout was reached for two angles of inclination. The data suggest that both IAS mixtures are compatible with aluminum heat pipes and exhibit performance similar to that of a copper and water heat pipe. It is demonstrated that IAS and aluminum heat pipes show potential for replacing existing copper and water devices for some applications and provide alternative options for heat pipe designers who value both the thermophysical property advantages of water and reduced weight of aluminum devices.


2019 ◽  
Vol 10 (4) ◽  
pp. 331-340 ◽  
Author(s):  
A. A. Spiridonov ◽  
D. V. Ushakov ◽  
V. A. Saechnikov

Currently, ultra-small satellite aresubjectstostringentrequirementsintermsoftheaccuracyof determining the position of the satellite in orbit, while the satellite is the subject to restrictions on mass, size and power consumption. The aim of this work is to simulate of navigation receiver operation for the ultra-small satellite with restrictions on energy consumption and computational resources.The operating conditions are considered and the requirements to the onboard navigation receiver for the ultra-small satellite are determined. The navigation receiver operation at the initial stage, performance testing, error detection, analysis of the reliability of the solution of the navigation-time determination problem are described.The structure of the design ballistics problems for orbit prediction of ultra-small spacecraft and navigation satellites, radio visibility intervals for GLONASS and GPS systems, parameters of navigation signals have been developed.The motion relative to the satellite systems GPS and GLONASS for a preliminary orbit of СubeBel-1 have been simulated. The Doppler dynamics of the GPS satellite signals in the receiver without restrictions on the relative speed for one day has been calculated. Radio visibility intervals for GPS and GLONASS satellites were calculated and optimal conditions for the cold start of the navigation receiver with a relative speed limit (Vr < 500 m/s) for 1 hour of operation both in separate and in joint operation on both systems were determined.To test the verification methods of the experimental data of the СubeBel-1 satellite, the operation of the navigation receiver of the Nsight satellite was studied according to the received telemetry from the beginning of its flight until the moment it entered stable operation.It is shown that the telemetry data of the navigation receiver at the testing stage had a significant error. After software correction, the navigation receiver worked steadily throughout the week of observation, the error of longitude and latitude measurements did not exceed 0.2 degrees.


Author(s):  
Victor Adrian Chiriac ◽  
Tien-Yu Tom Lee

A numerical study was conducted to model the transient thermal behavior of a complex testing system including multiple fans, a mixing enclosure, copper inserts and a leaded package dissipating large amounts of power over short time durations. The system is optimized by choosing appropriate heat sink/fan structure for the efficient operation of the device under constant powering. The intent of the study is to provide a better understanding and prediction of a transient powering scenario at high powering levels, while evaluating the impact of alternative cooling fan/heat pipe designs on the thermal performance of the testing system. One design is chosen due to its effective thermal performance and assembly simplicity, with the package embedded in heat sink base with multiple (5) heat pipes. The peak temperature reached by the modified design with 4 cooling fans is ~95°C, with the corresponding Rja thermal resistance ~0.58°C/W. For the transient study (with embedded heat pipes and 4 fans), after one cycle, both peak temperature (at 45 s) and the end temperature (at 49 s) decrease as compared to the previous no heat pipe/single fan case (the end temperature reduces by ~16%). The temperature drop between peak and end for each cycle is ~80.2°C, while the average power per transient cycle is ~31.27W. With this power, the design with 5 perpendicular heat pipes, 4 fans and insert reaches a steady state peak temperature of ~98°C. Applying the superposition principle to the steady state value and 40.1°C fluctuation, the maximum transient temperature after a large number of cycles will not exceed ~138.1°C, satisfying the thermal budget under the current operating conditions. The benefit of the study is related to the possibility to extract the maximum and minimum temperatures for a real test involving a large number of heating-cooling cycles, yet maintaining the initial and peak temperatures within a certain range for the optimal operation of the device. The flow and heat transfer fields are investigated; using a combination of numerical and analytical methods, the thermal performance of the device undergoing large number of periodic thermal cycles is predicted. The comparison between measurement and simulation shows good agreement.


Author(s):  
Mahboobe Mahdavi ◽  
Amir Faghri

Abstract In the present works, a comprehensive transient numerical model was developed to evaluate the effect of nanofluid on the transient performance of heat pipes. The numerical model solves for compressible vapor flow, the liquid flow in the wick region, and the energy equations in the vapor, wick and wall. The distinctive feature of the model is that it can uniquely determine the heat pipe operating pressure based on the physical and operating conditions of the system. Three nanoparticle types were considered: Al2O3, CuO, and TiO2. The effects of the concentration of nanoparticles (5%, 10%, 20% and 40%) were investigated on the heat pipe response time, thermal resistance, and pressure drop under various operating conditions. The results showed that the use of nanofluid decreased the response time of the heat pipe by the maximum of 27%. It was also discovered that the thermal resistance decreased significantly with an increase in the volume concentration. A maximum reduction of 84%, 82% and 78% in thermal resistance was obtained for Al2O3, CuO, and TiO2, respectively. In addition, the effect of nanoparticles on the liquid pressure drop highly depends on the nanoparticle type and volume concentration.


1993 ◽  
Vol 115 (4) ◽  
pp. 272-277
Author(s):  
T. S. Ravigururajan ◽  
M. L. Goryca

The radiator and its vulnerability to damage is one of the main criteria in automotive design. This study employed heat pipes in simulated radiators to transfer waste heat to the surrounding environment. A small-scale heat-pipe radiator module was designed using a computer program. Experimental tests were performed on this module to validate the design methodology and to study the vulnerability characteristics. The tests were conducted for a wide range of operating parameters such as air velocity, coolant flow rates, and the number of heat pipes damaged. The study indicated that a heat-pipe radiator may provide the necessary “limp home” capability to a vehicle, even with 50 percent of the pipes damaged. Also, with the radiators operating at less than peak load (slower vehicle speed), the undamaged heat pipes substantially compensated for the damaged heat pipes, adding to the reliability of the system.


2015 ◽  
Vol 789-790 ◽  
pp. 422-425
Author(s):  
Fun Liang Chang ◽  
Yew Mun Hung

Micro heat pipe is a two-phase heat transfer device offering effective high heat-flux removal in electronics cooling. Essentially, micro heat pipe relies on the phase change processes, namely evaporation and condensation, and the circulation of working fluid to function as heat transfer equipment. The vast applications of micro heat pipe in portable appliances necessitate its functionality under different orientations with respect to gravity. Therefore, its thermal performance is strongly related to its orientation. By incorporating solid wall conduction, together with the continuity, momentum, and energy equations of the working fluid, a mathematical model is developed to investigate the heat and fluid flow characteristics of inclined micro heat pipes. We investigate both the favorable and adverse effects of gravity on the circulation rate which is intimately related to the thermal performance of micro heat pipes. The effects of gravity, through the angle of inclination, on the circulation strength and heat transport capacity are analysed. This study serves as a useful analytical tool in the micro heat pipe design and performance analysis, associated with different inclinations and operating conditions.


Sign in / Sign up

Export Citation Format

Share Document